An ensemble model for the machine reading comprehension dataset SQuAD

Summer report

María Fernanda Mora

September 12th, 2016

<mark>arnegie Mellon University</mark> anguage Technologies Institute

Overview

- Problem definition
- Exploratory analysis
- Pipeline description
- Sentence ranking
- Answer extraction
- Implementation

Problem definition

Problem definition

• Implement a system capable of performing reading comprehension over SQuAD's data set

that outperforms the <u>current state of the art</u>.

- SQuAD's challenge:
 - No candidate answers provided
 - A correct answer to a question can be any sequence of tokens from the given text
 - Q&A in SQuAD were created by humans, hence more realistic

Exploratory analysis

Exploratory analysis

- General statistics
- Lexical analysis
- Syntactic analysis

Complete dataset

- 536 Wikipedia articles
- 108K QA pairs
- Training, dev and test
- Hierarchical view:

Model evaluation

- Output: sequence of tokens
- Measures: Exact match, F1

Training dataset

- 378 Wikipedia articles
- ~ 42 passages per article
- 5 questions per passage
- 1 answer per question
- ~ 80K QA pairs

Vocabulary Size

	# words
Passages	~88K (98% without stop words)
Questions	~1K (93% w/o stop words)
Answers	~0.5K (93% w/o stop words)

>99% of the questions are factoid; >50% are *what* questions

8

Questions length is similar; answers to *why* and *other* questions show length variation

Questions are larger than answers; *why* questions have the largest answers but represent <5%

answer

Exploratory analysis

- General statistics
- Lexical analysis
- Syntactic analysis

There exists a lexical similarity 0.3-0.4 between passages of the same article

* Random passages were extracted from all the articles

** Measured as cosine similarity

This similarity is independent of the length of the passage

LDA analysis varying number of words and topics showed the following persistent topics

- history
- government
- nation-state
- sports
- art

Exploratory analysis

- General statistics
- Lexical analysis
- Syntactic analysis
 - Embeddings
 - Word
 - Sentence
 - Paragraph

Word embeddings pipeline

Models

- Glove
- Skip-gram

Parameters

- Window size
- Vector size

- Min words in voc = 100
- Size of vectors = 100, 300, 500
- Size of window = 5, 15, 20

Window Size = 15 Vector Size = 100

Window Size = 15 Vector Size = 100

Window Size = 15

Vector Size = 100

Window Size = 15

Vector Size = 100

Window Size = 20

Vector Size = 100

Window Size = 20

Vector Size = 100

Window Size = 20

Vector Size = 100

Vector Size = 100

26

Window Size = 5

```
Vector Size = 100
```


Window Size = 5 Vector Size = 100

Vector Size = 500

Window Size = 15 Vector Size = 500 Cluster = 1

Window Size = 15 Vector Size = 500

- Min words in voc = 100
- Size of vectors = 100, 300, 500
- Size of window = 5, 15, 20

Window Size = 15

Vector Size = 300

33

Window Size = 15

Vector Size = 300

Cluster = 1

Captures different relations

Window Size = 15

Vector Size = 300

Cluster = 2

Captures different relations

22

GLOVE Topic Embedding

Topic 1th:

- jewish 0.022814
- jews 0.021276
- communities 0.009680
- see 0.005708
- judaism 0.005644
- orthodox 0.005516
- community 0.005324
- hebrew 0.005068
- israel 0.003658
- palestine 0.001864
- synagogue 0.001544
- persecution 0.001416
- jerusalem 0.001352
- group 0.001224
- holocaust 0.001224
- judah 0.001160

Topic 5th:

- pope 0.014170
- paul 0.008777
- john 0.006652
- cardinal 0.006597
- cardinals 0.005726
- bishops 0.005508
- athanasius 0.005344
- vi 0.005072
- rome 0.004963
- bishop 0.004309
- pius 0.003819
- see 0.003547
- vatican 0.003492
- papal 0.003056
- order 0.003002
- saint 0.002675

Topic 9th:

- economic 0.013044
- financial 0.009602
- economy 0.008634
- government 0.008365
- development 0.008311
- industry 0.007559
- public 0.007317
- world 0.005945
- trade 0.005918
- also 0.005649
- international 0.005596
- countries 0.005569
- production 0.005112
- sector 0.004762
- crisis 0.004762
- organization 0.004708

GLOVE Topic Embedding

- Min words in voc = 100
- Size of vectors = **300**
- Size of window = 15

GLOVE Topic Embedding

Window Size =
$$15$$

Vector Size = 300

GLOVE Topic Embedding

Window Size = 15 Vector Size = 300 Cluster = 6

GLOVE with topic capture Broad topics

40

Exploratory analysis

- General statistics
- Lexical analysis
- Syntactic analysis
 - Embeddings
 - Word
 - Sentence
 - Paragraph

Python's Doc2Vec on questions

Min_count=10

Window Size = 10

Vector Size = 100

what (80% of questions)

- 1. which: 0.67
- 2. where
- 3. represent
- 4. resemble
- 5. supports
- 6. origins
- 7. institution
- 8. protect
- 9. formal
- 10. mainly

who

- 1. succeeded: 0.78
- 2. successor
- 3. supports
- 4. prevented
- 5. group
- 6. party
- 7. freemasons
- 8. criticized
- 9. rebel
- 10. toward

how

- 1. there: 0.73
- 2. about
- 3. people
- 4. lines
- 5. live
- 6. days
- 7. million
- 8. many
- 9. millions
- 10. killed

which

- 1. named: 0.67
- 2. dominated
- 3. consisted
- 4. formed
- 5. mayor
- 6. divides
- 7. Somali
- 8. dominant
- 9. formerly
- 10. reform

when

- 1. why: 0.71
- 2. son
- 3. John
- 4. succeeded
- 5. leave
- 6. revolution
- 7. richard
- 8. constantinople
- 9. ask
- 10. before

where

1. v

why

- 1. stepper: 0.82
- 2. absorb
- 3. doing
- 4. mark
- 5. without
- 6. efficacy
- 7. genes
- 8. can
- 9. insects
- 10. maintain

Exploratory analysis

- General statistics
- Lexical analysis
- Syntactic analysis
 - Embeddings
 - Word
 - Sentence
 - Paragraph

Paragraph embeddings detect similarities between words

Python's Doc2Vec on paragraphs Min_count=10 Window Size = 10 Vector Size = 100

Synonym identification:

- sim(['college', 'professor'], ['university', 'teacher']) = 0.92
- sim(['marriage', 'husband', 'baby'], ['wife', 'wedding', 'children']) = 0.85
- sim(['house','residence','bed','accommodation','address'],['shelter','mansion ','home', 'place']) = 0.77

This analysis also detects non-related Python's Doc2Vec on paragraphs terms and analogies

Non-related terms identification:

- similarity('husband', 'floor') = 0.30
- similarity('night', 'chicken') = 0.29
- similarity('computer', 'city') = 0.22

Analogies

- woman is to king as man is to ...? prince
- Most similar to "queen": Madonna, widow, performed
- Most similar to "man": said, wrote, god

Min count=10

Window Size = 10 Vector Size = 100

The topics found with LDA can be refined using paragraph embeddings

LDA:

church + roman + first + emperor ~ history

Most similar words to LDA keywords:

- 1. rome: 0.86
- 2. byzantine
- 3. centuries
- 4. patriarch
- 5. 14th
- 6. survived
- 7. 12th
- 8. successors
- 9. constantine
- 10. succession

Roman Empire?

state + govern + force + war ~ government

war?

- 1. government: 0.85
- 2. administration
- 3. sovereign
- 4. military
- 5. suppress
- 6. forces
- 7. initiated
- 8. supported
- 9. organized
- 10. urged

The topics found with LDA can be refined using paragraph embeddings

LDA:

city + new + state + area + unit ~ nation-state

Most similar words to LDA keywords:

- 1. located: 0.86
- 2. metropolitan
- 3. headquarters
- 4. county
- 5. designated
- 6. operated
- 7. downtown
- 8. currently
- 9. main
- 10. serves

metropolitan areas?

- 1. championship: 0.89
- 2. games
- 3. players
- 4. fans
- 5. exhibition

game + team + play ~ sports

- 6. afl
- 7. matches
- 8. teams
- 9. nfl
- 10. super

The topics found with LDA can be refined using paragraph embeddings

LDA:

music + film + record ~ art

Most similar words to LDA keywords:

- films: 0.9 1.
- 2. featured
- 3. movie
- 4. studio
- 5. singers
- guitar 6.
- 7. songs
- artist 8.
- 9. albums
- hip-hop 10.

music and film recording?

Pipeline description

High level baseline pipeline

Sentence ranking

High level baseline pipeline

Sentence Ranking

The whole idea of sentence ranking is to exploit lexical and syntactical similarities between the question and the answer passage to obtain the sentence with the highest likelihood of being the answer.

Convolutional neural network model for reranking pairs of short texts:

- Learn optimal vector representation of Q-D
- Learn a similarity function between Q-D
 - vectors

Figure 2: Our deep learning architecture for reranking short text pairs.

Sentences are represented as sequences of words, where each word is an |s| dimensional continuous representation.

$$\mathbf{S} = \begin{bmatrix} | & | & | \\ \mathbf{w}_1 & \dots & \mathbf{w}_{|s|} \\ | & | & | \end{bmatrix}$$

A filter f is applied to the sequence in order to capture interactions among words.

$$\mathbf{c}_i = (\mathbf{s} * \mathbf{f})_i = \mathbf{s}_{[i-m+1:i]}^T \cdot \mathbf{f} = \sum_{k=i}^{i+m-1} s_k f_k$$

After this is done, a nonlinear activation function, ReLU in this case, is applied to every c_i and the results are pooled together via max pooling into a single c_{pooled} array representation.

$$\mathbf{c}_{\text{pooled}} = \begin{bmatrix} \text{pool}(\alpha(\mathbf{c}_1 + b_1 * \mathbf{e})) \\ \dots \\ \text{pool}(\alpha(\mathbf{c}_n + b_n * \mathbf{e})) \end{bmatrix}$$

Once these representations are obtained for each sentence x_d and each query x_q , a x_{sim} score is obtained by x_d 'M x_q and an x_{join} is created by simple concatenation. Each x_{join} is passed through a hidden layer to exploit interactions among its different components, and finally a softmax is used for the ranking.

The model is trained to minimize the cross-entropy function:

 $\begin{aligned} \mathcal{C} &= -\log \prod_{i=1}^{N} p(y_i | \mathbf{q}_i, \mathbf{d}_i) + \lambda \|\theta\|_2^2 \\ &= -\sum_{i=1}^{N} [y_i \log \mathbf{a}_i + (1 - y_i) \log(1 - \mathbf{a}_i)] + \lambda \|\theta\|_2^d, \end{aligned}$

where a is the output of the softmax and θ contains all the parameters of the network:

 $\theta = \{ \mathbf{W}; \mathbf{F}_q; \mathbf{b}_q; \mathbf{F}_d; \mathbf{b}_d; \mathbf{M}; \mathbf{w}_h; b_h; \mathbf{w}_s; b_s \}$

Regularization is used to avoid overfitting and stochastic gradient descent to cope with the non convexity of the problem.

In our model, we added an hybrid vector representation that used both, the representation trained over the AQUAINT corpus (to obtain the most general context of each word), and over the SQUAD dataset (to obtain the particular uses of each word). We also used Jaccard similarity as a proxy of relevance judgments, and we added topic information to the $\mathbf{x}_{\text{ioint}}$ representation.

Sentence Ranking BM25 & Jaccard similarity

Another approach that uses only lexical similarity, under the bag of words was applied, namely BM25 and Jaccard similarity:

• BM25

$$ext{score}(D,Q) = \sum_{i=1}^{n} ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot \left(1 - b + b \cdot rac{|D|}{ ext{avgdl}}
ight)} ext{IDF}(q_i) = \log rac{N - n(q_i) + 0.5}{n(q_i) + 0.5},$$

• Jaccard similarity

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}$$

Sentence Ranking Results

MODEL	MRR Score
Convolutional Neural Networks	.25
BM25	.71
Jaccard	.76

We believe that the bad results of the ConvNets is due to underfitting of the training data.

High level baseline pipeline

Answer extraction

Idea: Use *features* that extract lexical, syntactical and semantical structure of sentence, question and answer to train a classifier.

For each word in candidate answer sentence:

- indicator of right neighbor in question
- right neighbor NER
- right neighbor POS
- word Animacy
- word Gender
- word NER
- word Number
- word POS
- word type

- dependency with father
- indicator father in question
- father NER
- father POS
- indicator of word in question
- indicator of left neighbor in question
- left neighbor NER
- left neighbor POS
- question type

Example: It

(False, u'lt', u'PRP', u'O', False, 'whom', '', '', '', u'is', u'VBZ', u'O', False, False, u'replica', u'NN', u'O', u'nsubj', False, False, u'INANIMATE', u'SINGULAR', u'NEUTRAL', u'PRONOMINAL')

Model

- 1000 trees
- 5 variables per cut
- Gini criterion

Results

Training:

F1 score = .49

precision = .62

Test:

F1 score = .47

precision = .6

"56d601e41c85041400946ed0":	"sacked him seven times and",
"56d601e41c85041400946ed1":	"Bowl 50 and",
"56d601e41c85041400946ed2":	"tackles 21/2 sacks",
"56d98b33dc89441400fdb53b":	"him seven times",
"56d98b33dc89441400fdb53c":	"Bowl 50 and",
"56d98b33dc89441400fdb53d";	
"56d98b33dc89441400fdb53e":	"tackles 21/2 sacks",
"56be5333acb8001400a5030a":	
"56be5333acb8001400a5030b":	
"56be5333acb8001400a5030c";	"and Bruno Mars who headlined",
"56be5333acb8001400a5030d":	
"56be5333acb8001400a5030e":	
"56beaf5e3aeaaa14008c91fd":	"50",
"56beaf5e3aeaaa14008c91fe":	
"56beaf5e3aeaaa14008c91ff":	"Bruno Mars who",
"56beaf5e3aeaaa14008c9200":	"Mars".
"56beaf5e3aeaaa14008c9201":	
"56bflae93aeaaa14008c951b":	
"56bflae93aeaaa14008c951c":	"of 5 million",
"56bf1ae93aeaaa14008c951e":	
"56bf1ae93aeaaa14008c951f":	
"56d2051ce7d4791d00902608":	"of 5 million",
"56d2051ce7d4791d00902609":	
"56d2051ce7d4791d0090260a":	
"56d2051ce7d4791d0090260b":	
"56d602631c85041400946ed8":	
"56d602631c85041400946ed8": "56d602631c85041400946eda":	
560602651685041400946eda :	Bruno Mars who

Our pipeline implementation supports:

- An end to end pipelined execution.
- Model training
- Model testing
- Interactive Mode

Model training:

The system allows you to choose the number of sentences to be considered as part of the answer as well as the number of instances used on the training phase.

Model testing:

It also gives you the option to train or test the model. And provides a final evaluation with Stanford's script.

##	#	#	# :	# #	#	: #	#	#	#	#	#	#	#	# ;	ŧ ‡	ŧ #	: #	#	#	#	#	#	#	#	#	#	# ;	# #	# \$	# #	: #	#	#	#	#	# :	# #	* *	: #	#	#	#	# :	# :	#;	# #	# #	¥ 4	# #	#	#			
	e	a	t (: 1	1 0	0									U		ן ו																										
D o			ο ι			/ a							t				a									t		e	e																									
# # :	#	#	# :	ŧ #	: #	#	#						#	# ;	¥ #	ŧ #	:#	#	#	#						#	# 1	# #	# 1	# #	#	#				# :	# \$	# #	: #	#		#	# :	# :	# :	# #	# #	# #	* #	:#	#			
	u	n	n i		g									e)	(t		a																																					
¥ # ·	#	#	# :	ŧ #	ŧ #	:#	#						#	# :	¥ \$	ŧ #	:#	: #	#	#						#	# ;	# #	# 1	# #	: #	#				# ;	# ;	¥ \$: #	#		#	# :	# ;	# ;	# #	# #	¥ #	ŧ #	:#	#			
	n	s	w	e r										0 1			e										01	u t		οu								o u	ı t					p I		a c	11						0	
	t	aı	n f										t	1			n	na								u	t									p١	u t							s 1	ti	a r	h f		o r	d				
	t	aı	n f											u a	ı t		0	n																																				
	f												8	0 9	9 5	2	з	8								e	×	a c	c t			na										4	9 (0 !	5 (5 6	6 C) 3	37		з		4	9 }
	•	n	e !																																																			

Model interactive mode:

Finally, to enable testing of new models, the system also supports interactive mode.

Introduce a question Who was the director of Subway Sadie?

Model interactive mode:

Finally, to enable testing of new models, the system also supports interactive mode.

End to end execution results evaluated under Stanford's metric:

{"f1": 0.20368373764600187, "exact_match": 0.07547169811320754}

	Exact	t Match]	F1
	Dev	Test	Dev	Test
Random Guess	1.1%	1.3%	4.1%	4.3%
Sliding Window	13.2%	12.5%	20.2%	19.7%
Sliding Win. + Dist.	13.3%	13.0%	20.2%	20.0%
Logistic Regression	40.0%	40.4%	51.0%	51.0%
Human	80.3%	77.0%	90.5%	86.8%

References

- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
- Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space Word Representations. In Proceedings of NAACL HLT, 2013.
- Le, Quoc V., and Tomas Mikolov. "Distributed Representations of Sentences and Documents." ICML. Vol. 14. 2014.
- Tomas Mikolov, Quoc V. Le and Ilya Sutskever.Exploiting Similarities among Languages for Machine Translation.

References

- Levy, Omer, and Yoav Goldberg. "Dependency-Based Word Embeddings." ACL (2). 2014.
- Levy, Omer, Yoav Goldberg, and Ido Dagan. "Improving distributional similarity with lessons learned from word embeddings." Transactions of the Association for Computational Linguistics 3 (2015): 211-225.
- Levy, Omer, Yoav Goldberg, and Israel Ramat-Gan. "Linguistic Regularities in Sparse and Explicit Word Representations." CoNLL. 2014.
- L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.
- Rajpurkar, Pranav, et al. "SQuAD: 100,000+ Questions for Machine Comprehension of Text." *arXiv* preprint arXiv:1606.05250 (2016).

References

- Jolliffe, Ian. *Principal component analysis*. John Wiley & Sons, Ltd, 2002.
- Blei, David M., and John D. Lafferty. "Topic models." *Text mining: classification, clustering, and applications* 10.71 (2009): 34.
- Severyn, Aliaksei, and Alessandro Moschitti. "Learning to rank short text pairs with convolutional deep neural networks." *Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval*. ACM, 2015.