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Problem definition



Problem definition
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● Implement a system capable of performing 

reading comprehension over SQuAD’s data set 

that outperforms the current state of the art. 

● SQuAD’s challenge: 
○ No candidate answers provided

○ A correct answer to a question can be any sequence of tokens from 

the given text

○ Q&A in SQuAD were created by humans, hence more realistic

https://rajpurkar.github.io/SQuAD-explorer/


Exploratory analysis



Exploratory analysis
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● General statistics

● Lexical analysis

● Syntactic analysis 



Complete dataset 
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Training dataset
● 378 Wikipedia articles

● ~ 42 passages per article

● 5 questions per passage

● 1 answer per question

● ~ 80K QA pairsArticle n

Passagem,n 

Question1,m,n Question2,m,n Question3,m,n Question4,m,n Question5,,m,n 

Answer1,m,n Answer2,m,n Answer3,m,n Answer4,m,n Answer5,,m,n # words

Passages ~88K
(98% without stop words)

Questions ~1K
(93% w/o stop words)

Answers ~0.5K
(93% w/o stop words)

Vocabulary Size

● 536 Wikipedia articles

● 108K QA pairs

● Training, dev and test

● Hierarchical view:

Model evaluation 
● Output: sequence of tokens

● Measures: Exact match, F1



>99% of the questions are factoid; >50% are what 
questions
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Frequency of questions

Type of question



Questions length is similar; answers to why and 
other questions show length variation
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Questions Answers
# of words

# of words



Questions are larger than answers; why questions 
have the largest answers but represent <5%
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Number of words per 
question

Number of words per 
answer

Where

Which

What

Other

Why

Who

How

When



Exploratory analysis
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● General statistics

● Lexical analysis

● Syntactic analysis 



% passages

Lexical similarity
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*

There exists a lexical similarity 0.3-0.4 between 
passages of the same article 

**

*    Random passages were extracted from all the articles 
** Measured as cosine similarity



This similarity is independent of the length of the 
passage 

Histogram of the lexical similarity between paragraphs of an article

% paragraphs
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Passages’ length

Lexical similarity



LDA analysis varying number of words and topics 
showed the following persistent topics

● history 

● government 

● nation-state 

● sports 

● art

14



Exploratory analysis

15

● General statistics

● Lexical analysis

● Syntactic analysis

○ Embeddings

■ Word

■ Sentence

■ Paragraph 
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Word 
embeddings

Dimensionality 
reduction Clustering Visualization

Linear
Syntactic
Topical

t-SNE k-means scatterplot

Word embeddings pipeline



Models
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● Glove

● Skip-gram

Parameters

● Window size

● Vector size



GLOVE Linear Embedding

18

● Min words in voc = 100

● Size of vectors = 100, 300, 500

● Size of window = 5, 15, 20



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 100



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 100

Cluster = 2

dates   90’s

numbers

dates   00’s

months



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 100

Cluster = 4

sports

dates (th)

music



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 100

Cluster = 5

sports

dates (th)

music

kings

politics

gender



GLOVE
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GLOVE Linear Embedding

Window Size = 20

Vector Size = 100



GLOVE
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GLOVE Linear Embedding

Window Size = 20

Vector Size = 100

Cluster = 5

sports

dates (th)

music

politics

gender

numbers

months

years

languages

kings



GLOVE
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GLOVE Linear Embedding

Window Size = 20

Vector Size = 100

Cluster = 6

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

politics

ottomans



GLOVE
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GLOVE Linear Embedding

Window Size = 5

Vector Size = 100



GLOVE
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GLOVE Linear Embedding

Window Size = 5

Vector Size = 100

Cluster = 5

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

numbers and months

years

years

numbers



GLOVE
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GLOVE Linear Embedding

Window Size = 5

Vector Size = 100

Cluster = 6

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

numbers and months

years

years

kings

 war

 religion



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 500



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 500

Cluster = 1

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

numbers and months

years

years

kings  languages

 politics

 war



GLOVE
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GLOVE Linear Embedding

Window Size = 15

Vector Size = 500

Cluster = 2

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

numbers and months

years

years

kings  languages

 politics

 numbers and months

years

finance



GLOVE Syntactic Embedding
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● Min words in voc = 100

● Size of vectors = 100, 300, 500

● Size of window = 5, 15, 20



GLOVE
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GLOVE Syntactic Embedding

Window Size = 15

Vector Size = 300



GLOVE
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GLOVE Syntactic Embedding

Window Size = 15

Vector Size = 300

Cluster = 1

Captures different relations

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

numbers and months

years

years

kings  languages

 politics

 measure units

 cities



GLOVE
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GLOVE Syntactic Embedding

Window Size = 15

Vector Size = 300

Cluster = 2

Captures different relations 

sports

dates (th)

music

politics

gender

numbers
years

languages

kings

numbers and months

years

years

kings  languages

 politics

 war



GLOVE Topic Embedding
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Topic 1th:
●     jewish   0.022814

●     jews   0.021276

●     communities   0.009680

●     see   0.005708

●     judaism   0.005644

●     orthodox   0.005516

●     community   0.005324

●     hebrew   0.005068

●     israel   0.003658

●     palestine   0.001864

●     synagogue   0.001544

●     persecution   0.001416

●     jerusalem   0.001352

●     group   0.001224

●     holocaust   0.001224

●     judah   0.001160

Topic 5th:
● pope   0.014170

● paul   0.008777

● john   0.006652

●  cardinal   0.006597

● cardinals   0.005726

● bishops   0.005508

● athanasius   0.005344

● vi   0.005072

● rome   0.004963

● bishop   0.004309

● pius   0.003819

● see   0.003547

● vatican   0.003492

●  papal   0.003056

●  order   0.003002

●  saint   0.002675

Topic 9th:
●     economic   0.013044

●     financial   0.009602

●     economy   0.008634

●     government   0.008365

●     development   0.008311

●     industry   0.007559

●     public   0.007317

●     world   0.005945

●     trade   0.005918

●     also   0.005649

●     international   0.005596

●     countries   0.005569

●     production   0.005112

●     sector   0.004762

●     crisis   0.004762

●     organization   0.004708



GLOVE Topic Embedding
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● Min words in voc = 100

● Size of vectors = 300

● Size of window = 15



GLOVE
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GLOVE Topic Embedding

Window Size = 15

Vector Size = 300



GLOVE
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GLOVE Topic Embedding

Window Size = 15

Vector Size = 300

Cluster = 1

GLOVE with topic capture

Broad topics

 numbers

 months

 years 00’s & 90’s



GLOVE
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GLOVE Topic Embedding

Window Size = 15

Vector Size = 300

Cluster = 6

GLOVE with topic capture

Broad topics

 numbers

 years 00’s & 90’s

kings & kingdoms

religions

writing



Exploratory analysis
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● General statistics

● Lexical analysis

● Syntactic analysis

○ Embeddings

■ Word

■ Sentence

■ Paragraph 
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what (80% of questions)
1. which: 0.67
2. where
3. represent
4. resemble
5. supports
6. origins
7. institution
8. protect
9. formal 

10. mainly

who
1. succeeded: 0.78
2. successor
3. supports
4. prevented
5. group
6. party
7. freemasons
8. criticized
9. rebel

10. toward

Similar words to 6W+how questions
Python’s Doc2Vec on questions

Min_count=10

Window Size = 10

Vector Size = 100
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how
1. there: 0.73
2. about
3. people
4. lines
5. live
6. days
7. million
8. many
9. millions

10. killed

which
1. named: 0.67
2. dominated
3. consisted
4. formed
5. mayor
6. divides
7. Somali
8. dominant
9. formerly

10. reform

Similar words to 6W+how questions
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when
1. why: 0.71
2. son
3. John
4. succeeded
5. leave
6. revolution
7. richard
8. constantinople
9. ask

10. before

where
1. v

Similar words to 6W+how questions



Similar words to 6W+how questions
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why
1. stepper: 0.82
2. absorb
3. doing
4. mark
5. without
6. efficacy
7. genes
8. can
9. insects

10. maintain



Exploratory analysis
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● General statistics

● Lexical analysis

● Syntactic analysis

○ Embeddings

■ Word

■ Sentence

■ Paragraph 



Paragraph embeddings detect 
similarities between words
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Synonym identification:

● sim(['college', 'professor'], ['university', 'teacher']) = 0.92

● sim(['marriage', 'husband', 'baby'], ['wife', 'wedding', 'children']) = 0.85

● sim(['house','residence','bed','accommodation','address'],['shelter','mansion
','home', 'place']) = 0.77

Python’s Doc2Vec on paragraphs

Min_count=10

Window Size = 10

Vector Size = 100



This analysis also detects non-related 
terms and analogies
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Non-related terms identification:

● similarity('husband', 'floor') = 0.30

● similarity('night', 'chicken') = 0.29

● similarity('computer', 'city') = 0.22

Analogies

● woman is to king as man is to…? prince

● Most similar to “queen”: Madonna, widow, performed

● Most similar to “man”: said, wrote, god

Python’s Doc2Vec on paragraphs

Min_count=10

Window Size = 10

Vector Size = 100



The topics found with LDA can be refined using 
paragraph embeddings 
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church + roman + first + emperor ~ history

1. rome: 0.86
2. byzantine
3. centuries
4. patriarch
5. 14th
6. survived
7. 12th
8. successors
9. constantine

10. succession

state + govern + force + war ~ government

1. government: 0.85
2. administration
3. sovereign
4. military
5. suppress
6. forces
7. initiated
8. supported
9. organized

10. urged

Roman Empire? war?

LDA:

Most similar words to LDA keywords:



The topics found with LDA can be refined using 
paragraph embeddings 
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city + new + state + area + unit ~ nation-state

1. located: 0.86
2. metropolitan
3. headquarters
4. county
5. designated
6. operated
7. downtown
8. currently
9. main

10. serves

game + team + play ~ sports

1. championship: 0.89
2. games
3. players
4. fans
5. exhibition
6. afl
7. matches
8. teams
9. nfl

10. super

metropolitan areas? championship?

LDA:

Most similar words to LDA keywords:



The topics found with LDA can be refined using 
paragraph embeddings 
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music + film + record ~ art

1. films: 0.9
2. featured
3. movie
4. studio
5. singers
6. guitar
7. songs
8. artist
9. albums

10. hip-hop

music and film 
recording?

LDA:

Most similar words to LDA keywords:



Pipeline description



EvaluationLearning
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Answer extraction

High level baseline pipeline

Sentence ranking



Sentence ranking



EvaluationLearning
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Answer extraction

High level baseline pipeline

Sentence ranking



Sentence Ranking
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The whole idea of sentence ranking is to exploit 

lexical and syntactical similarities between the 

question and the answer passage to obtain the 

sentence with the highest likelihood of being 

the answer.



Sentence Ranking Convolutional Neural Networks
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Convolutional neural network model for 

reranking pairs of short texts:

● Learn optimal vector representation of Q-D

● Learn a similarity function between Q-D 

vectors



Sentence Ranking Convolutional Neural Networks
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Sentence Ranking Convolutional Neural Networks
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Sentences are represented as sequences of 

words, where each word is an |s| 

dimensional continuous representation.

A filter f is applied to the sequence in order 

to capture interactions among words.



Sentence Ranking Convolutional Neural Networks
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After this is done, a nonlinear activation 

function, ReLU in this case, is applied to 

every ci and the results are pooled together 

via max pooling into a single cpooled array 

representation.



Sentence Ranking Convolutional Neural Networks
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Once these representations are obtained for 

each sentence xd and each query xq, a xsim 

score is obtained by xd’Mxq and an xjoin is 

created by simple concatenation.

Each xjoin is passed through a hidden layer to 

exploit interactions among its different 

components, and finally a softmax is used 

for the ranking. 



Sentence Ranking Convolutional Neural Networks
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The model is trained to minimize the 

cross-entropy function:

where a is the output of the softmax and Ṉ 

contains all the parameters of the network: 

Regularization is used to avoid overfitting 

and stochastic gradient descent to cope 

with the non convexity of the problem. 



Sentence Ranking Convolutional Neural Networks
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In our model, we added an hybrid vector 

representation that used both, the 

representation trained over the AQUAINT 

corpus (to obtain the most general context 

of each word), and over the SQUAD dataset 

(to obtain the particular uses of each word). 

We also used Jaccard similarity as a proxy of 

relevance judgments, and we added topic 

information to the xjoint representation.



Sentence Ranking BM25 & Jaccard similarity
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Another approach that uses only lexical similarity, under the bag of 

words was applied, namely BM25 and Jaccard similarity:

● BM25

● Jaccard similarity



Sentence Ranking Results
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MODEL MRR Score

Convolutional Neural Networks    .25

BM25 .71

Jaccard .76

We believe that the bad results of the ConvNets is due to underfitting of the 
training data.



EvaluationLearning
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Answer extraction

High level baseline pipeline

Sentence ranking



Answer extraction



Answer extraction Random Forests
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Idea: Use features that extract lexical, syntactical and semantical structure of 

sentence, question and answer to train a classifier.

For each word in candidate answer sentence:

- indicator of right neighbor   in question 

- right neighbor NER

- right neighbor POS

- word Animacy

- word Gender

- word NER

- word Number

- word POS                         

- word type

- dependency with father

- indicator father in question

- father NER

- father POS

- indicator of word in question

- indicator of left neighbor in question

- left neighbor NER

- left neighbor POS

- question type



Answer extraction Random Forests
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Example: It

(False, u'It', u'PRP', u'O', False, 'whom', '', '', '', '', '', u'is', u'VBZ', u'O', False, False, u'replica', 

u'NN', u'O', u'nsubj', False, False, u'INANIMATE', u'SINGULAR', u'NEUTRAL', 

u'PRONOMINAL')



Answer extraction Random Forests
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Model

- 1000 trees

- 5 variables per cut

- Gini criterion

Results

Training:

F1 score = .49

precision = .62

Test:

F1 score = .47

precision = .6



Answer extraction Random Forests
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Pipeline implementation



Pipeline implementation
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Our pipeline implementation supports:

- An end to end pipelined execution.

- Model training

- Model testing

- Interactive Mode



Pipeline implementation
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Model training:

The system allows you to choose the 

number of sentences to be considered 

as part of the answer as well as the 

number of instances used on the 

training phase.



Pipeline implementation
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Model testing:

It also gives you the option to train or 

test the model. And provides a final 

evaluation with Stanford’s script.



Pipeline implementation
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Model interactive mode:

Finally, to enable testing of new 

models, the system also supports 

interactive mode.



Pipeline implementation
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Model interactive mode:

Finally, to enable testing of new 

models, the system also supports 

interactive mode.



Pipeline implementation
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End to end execution results evaluated under Stanford’s metric:

{"f1": 0.20368373764600187, "exact_match": 0.07547169811320754}
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