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Related Work
Problem definition
Natural language understanding (NLU) is considered a sub-
field of natural language processing (NLP) that deals with
machine reading comprehension. Since the 60’s there have
been efforts towards the advancement in this task. Most of
these previous systems share similar components: a lexicon
of the language and a parser and grammar rules to break sen-
tences into an internal representation. Building a rich lexi-
con with an adequate ontology like Wordnet required many
person-years [Miller et al.1990].

Regardless of these efforts progress in this area has been
slow and NLU is considered an AI-hard problem. Hence,
recently, machine learning approaches to reading compre-
hension have been taken. One long-term goal of machine
learning research is to produce methods that are applica-
ble to reasoning and natural language, in particular building
an intelligent dialogue agent [Weston et al.2015]. In fact,
besides the theoretical interest, there is considerable com-
mercial interest in machine reading comprehension because
of its application to gathering, mining and analysis of large
scale unstructured data such as news and voice. IBM’s Wat-
son and Apple’s Siri are examples of this trend.

Question-answering is another subfield of NLP and Infor-
mation Retrieval that is related to machine comprehension
because it aims to build systems that automatically answer
questions posed by humans in natural language. Currently,
Machine reading comprehension lies in the intersection of
natural language processing (NLP), machine learning (ML)
and question-answering (QA).

Typically, machine reading comprehension can be defined
as the ability of a machine system to read and understand
natural language documents at a sufficient level where it is
capable of answering questions based on the original text.
Unlike tasks like dialogue or summarization, this evaluation
approach (i.e. based on questions and answers) is easier to
grade and thus makes it an appealing research avenue [We-
ston et al.2015]. Although there is an evaluation criteria,
teaching machines to really understand natural language and
be able to correctly answer questions remains a puzzling
challenge.

The challenge can be divided into two sequential and in-
terrelated sub-problems. First, machine reading comprehen-

sion models are hard on its own: it is very difficult to struc-
ture and build models flexible enough to learn to exploit doc-
ument structure. Humans do not understand language in iso-
lation, the context in which sentences and words are under-
stood plays an important role in human comprehension, so
the question is if machines can exploit this context -and how-
to make predictions about natural language [Hill et al.2015].
Second, these models are trained and evaluated using the
available data and assessing how good the proposed model
answers to questions about a given text. The dilemma is that
for this evaluation to be meaningful, adequate training and
testing datasets are essential. A clear example of this limi-
tation is that supervised machine learning approaches have
largely been absent due to both the lack of large scale train-
ing dataset and the difficulty in structuring statistical models
flexible enough to learn to exploit document structure [Her-
mann et al.2015].

Accordingly, high-quality, real and large datasets play an
crucial role to make progress on machine comprehension.
The complication is that already existent datasets suffer from
shortcomings such as being too small but realistic or large
but semi-synthetic, thus not realistic.

In response to this, recently there has been two major ef-
forts towards the advance of machine reading comprehen-
sion: creation of datasets and development of models.

Datasets

We can classify the reading comprehension datasets by how
they generate the questions: cloze style or human annota-
tors.

Cloze style.- While obtaining supervised natural language
reading comprehension data has proved difficult, some re-
searchers have explored generating synthetic narratives and
queries [Hermann et al.2015]. Such approaches allow the
generation of almost unlimited amounts of supervised data
and enable researchers to isolate the performance of their
algorithms on individual simulated phenomena.

The most representative example of this trend are the
cloze style datasets. These datasets are created by remov-
ing certain words from chunks of texts. Figure 1 shows an
illustration of a text in cloze style.



Figure 1: Example of a text in cloze style from [Hadley and
Naaykens1999].

The reading comprehension ability is assessed by how
well the model is able to replace the missing words. The ad-
vantage of these types of datasets is that they can be retrieved
or generated automatically, thus they can run very large. Un-
doubtedly, they have accelerated the research of machine
comprehension [Cui et al.2016] . For example, [Hermann
et al.2015] created a supervised dataset of this type collect-
ing roughly one million short summaries of the news arti-
cles from CNN and Daily Mail: c is a context document,
q is a query relating to that document, and a the answer to
that query. The summary and paraphrase sentences, with
their associated documents, can be readily converted to con-
text–query–answer triples using simple entity detection and
anonymisation algorithm [Hermann et al.2015]. The entities
were anonymised so that models cannot apply knowledge
that is not related to the content of the article (e.g. pointing
to an entity as a candidate answer simply because it appears
very frequently in the corpus) and therefore favoring text un-
derstanding.

The following Figure 2 shows an example of how the
cloze-style questions look like: authors constructed the cor-
pus of document-query-answer triples by replacing one en-
tity at a time with a placeholder.

Figure 2: Example of the cloze-style questions in [Hermann
et al.2015]

Another example is the Children’s Book Test dataset by

[Hill et al.2015] which was generated automatically from
books that are freely available in the Project Gutenberg1.
According to the authors, using children’s books guarantees
a clear narrative structure, which can make the role of con-
text more preeminent. The machine comprehension test is
performed using 20 sentences from a children’s story (the
context S) that are used to predict the missing word (the an-
swer a) in the 21th sentence (the question q) from a pool of
10 candidate answers (the candidates C ).

The following Figure 3 shows an example question: a
cloze style question q (right) created from a book passage
S (left, in blue), the candidate answers C are both entities
and common nouns, and the answer a, which is Baxter.

Figure 3: Example of the cloze-style questions in [Hill et
al.2015]

A difference between both datasets is that [Hermann et
al.2015] focuses more on paraphrasing parts of a text, rather
than making inferences and predictions from contexts as in
the Children’s Book Test dataset by [Hill et al.2015].

It is worthwhile to point out that cloze style datasets does
not have ‘real’ or factoid questions. Factoid question an-
swering is the most widely studied task in question answer-
ing [Wang2006]. These questions ask to provide concise
facts, for example: Where is the Louvre located?, In what
year did American civil war take place?, What metal has the
highest melting point?, When were William Shakespeare ’s
twins born?, Which president was unmarried?. According
to [Wang2006] the recent research trend is shifting toward
more complex types of questions2:

• Definitional questions:
Entity definition questions: “what is epilepsy?”,

“what are coral reefs?”, “how do you measure earth-
quakes?”.

Biographical questions: “who was Galileo?”, “who
is Hilary Clinton?”.

• List questions: “list five Communist countries”, “list the
female characters of “The Iliad and the Odyssey””.

• Scenario-based question answering: given a short de-
scription of a scenario, the objective is to answer ques-
1https://www.gutenberg.org/
2The example questions where taken from the pool of questions

generated by [Li and Roth2002].



tions about relations between entities mentioned in the
scenario.

• Why-type: ask for an explanation or reason, for example,
“why is the sun yellow?”, “why is a ladybug helpful?”,
“Why does the moon turn orange?”.

The importance of factoid questions is that there ex-
ist clearly defined and relatively uncontroversial evaluation
standards for answering them: usually only one or at most
a few correct answers to a given question, and the answer
in most cases is a single word token or a short noun phrase,
while for other types of questions the evaluation is somewhat
controversial [Wang2006].

Additionally, some researchers suggested that these
datasets require less high-level inference than expected.
Also, the path in training and testing phase is nearly the
same, making it easier for the machine to learn these pat-
terns instead of reasoning about the meaning of the text [Cui
et al.2016]. This is why this datasets are also called synthetic
or semi-synthetic.

[Cui et al.2016] published two similar datasets in Chi-
nese: the People Daily dataset and the Children’s Fairy Tale
dataset. The approach is similar to [Hermann et al.2015]
and [Hill et al.2015] but there is a human evaluated dataset
for testing purpose. So it will be harder for the machine
to answer these questions than the automatically generated
ones, because the human evaluated dataset is further pro-
cessed and curated and may not be accordance with the pat-
tern of automatic questions [Cui et al.2016]. This observa-
tion leads us to the next type of datasets: human annotated.

Human annotated.- These datasets are created totally or
partially by humans with the purpose of creating real ques-
tions. The goal is to build technology that actually under-
stands stories and paragraphs on a meaningful level, as op-
posed to using information retrieval methods and the re-
dundancy of the web or knowledge repositories (such as
Wikipedia) to find the answers. The questions of these
datasets are mainly factoid questions.

For example, [Richardson, Burges, and Renshaw2013]
constructed through crowdsourcing the MCTest dataset con-
sisting of short fictional stories, together with four associ-
ated factoid questions and four candidate answers. The fic-
tional approach imply that the answer can be found only in
the story itself. This feature allows to focus on the high-level
goal of open-domain machine comprehension, instead of the
previous work that focused on limited-domain datasets, or
on solving a more restricted task (e.g., open-domain rela-
tion extraction). The dataset is open-domain, yet restricted
to concepts and words that a 7 year old is expected to un-
derstand. The ability to perform causal or counterfactual
reasoning, inference among relations, or just basic under-
standing of the world in which the passage is tested through
multiple-choice answers, thus providing an objective metric
to evaluate the future models.

The following Figure 4 shows an randomly generated
sample of a story written by a worker of this experiment.

Figure 4: Example of the fictional stories and questions in
[Richardson, Burges, and Renshaw2013]

Although the authors claim that its approach is scalable,
the dataset is totally generated by humans, thus making real
scalability prohibitive. In fact the authors only generated
500 stories and 2000 questions. Another weakness of this
dataset is that the stories were written to be understandable
by a child in grade school, potentially preventing a model
from really performing natural language comprehension.

Another human annoted dataset is the MovieQA created
by [Tapaswi et al.2015] and is novel because it uses multiple
sources of information such as video clips, plots, subtitles,
scripts and DVS of movies for question answering. Accord-
ing to the authors, the dataset consists of 14,944 questions
about 408 movies with high semantic diversity. The ques-
tions range from simpler Who did What to Whom, to Why
and How certain events occurred. The questions have a set
of five possible answers, a correct one and four deceiving
answers provided by human annotators. There are also can-
didate answers provided.

Figure 5 shows two single frame examples of the
MovieQA dataset.

Figure 5: Two single frame examples from the MovieQA
dataset of [Tapaswi et al.2015]



While some questions can be answered using vision or
dialogs alone, most require both: vision can be used to locate
the scene set by the question and semantics extracted from
dialogs can be used to answer it. The goal of this dataset is
semantic understanding over long temporal data [Tapaswi et
al.2015]. So MovieQA poses a more difficult problem than
machine reading comprehension alone. This dataset has the
same scalability disadvantages than the previous one.

As we have discussed, the cloze style approach is scalable
but synthetic, and the human annotation approach is more
realistic but not scalable.

SQuAD.-
The Stanford Question and Answering Dataset (SQuAD)3

[Rajpurkar et al.2016] was built in mind to overcome these
deficiencies. SQuAD is formed by 100,000+ question-
answer pairs based on 500+ Wikipedia articles (specifically
107,785 and 536). The questions and answers were anno-
tated through a mechanical turk. The questions are designed
to bring answers which can be defined as a span, or segment
of the corresponding passage or context.

Figure 6 shows an example posed by [Rajpurkar et
al.2016]. In order to answer the question “what causes pre-
cipitation to fall?” one might first locate the relevant part of
the passage “precipitation ... falls under gravity”, then rea-
son that “under” refers to a cause and not to a location, and
thus determine the correct answer: “gravity”. This exem-
plifies how machines require both understanding of natural
language and knowledge about the world to achieve reading
comprehension.

Figure 6: Example of passage, question and answer pairs in
SQuAD

The following text shows a randomly sampled passage,
question and answer from SQuAD extracted by the author
of this Literature Review. It is interesting to note that the

3https://stanford-qa.com/

question is generated using very different syntactic symbols.
For example, the words “example” and “strongly” doesn’t
appear in the passage. So the machine must infer that
“strongly” is a synonym of “powerful” and that “churches
and cathedrals” are examples of the Gothic style.

Passage: It is in the great churches and cathedrals and
in a number of civic buildings that the Gothic style was
expressed most powerfully, its characteristics lending
themselves to appeals to the emotions, whether springing
from faith or from civic pride.
Question: What is an example of where the Gothic style is
expressed most strongly?
Answer: churches and cathedrals

SQuAD provides a challenging dataset for building, test-
ing and evaluating machine comprehension models and sys-
tems for three main reasons:

1. No candidate answers are provided: instead of a prede-
fined list of answer choices such as [Richardson, Burges,
and Renshaw2013] and [Tapaswi et al.2015], in SQuAD
all the possible spans in the passages are candidate an-
swers thus needing to cope with a fairly large number of
candidates (as many as the number of words in the given
paragraph), presumably making the task harder. Regard-
less that [Hermann et al.2015] can be thought as also lack-
ing question candidates, this is not the case as the answers
in this dataset are enumerated entities (see Figure 2).
[Rajpurkar et al.2016] argues that while questions with

span-based answers are more constrained than the more
interpretative questions found in more advanced standard-
ized tests, they found a rich diversity of questions and an-
swer types in SQuAD. This richness can be appreciated
in Figure 7 that shows that SQuAD consists of a large
number of answers beyond proper noun entities: 19.8 %
is numeric, 32.6 % are proper nouns, 31.8 % are common
noun phrases and 15.8% are made up of adjective phrases,
verb phrases, clauses and other types. This is contrary
to [Hermann et al.2015], where all the answers are named
entities.

Figure 7: Answer types found in SQuAD

To quantify the richness -and difficulty-, the authors per-
formed two tasks: 1. stratified the questions by difficulty



and 2. developed techniques based on distances in depen-
dency trees. To perform the first, they sampled 192 ex-
amples, and then manually labeled the examples with the
categories shown in Figure 8. The results show that all ex-
amples have some sort of lexical or syntactic divergence
between the question and the answer in the passage.

Figure 8: Assessment of question difficulty in SQuAD

To perform the second, they developed an automatic
method based on distances in dependency trees to quan-
tify the similarity between question and the sentences
containing the answer by measuring syntactic divergence
between them. The histogram of this metric can be seen in
Figure 9. Intuitively, the higher the syntactic divergence
between question and answer, the more difficult the ques-
tion.

Figure 9: Histogram of syntactic divergence

Both tasks also allow to stratify the dataset, a key com-
ponent in the modeling phase. The span constraint also
comes with the additional benefit that span-based answers
are easier to evaluate than free-form answers. [Richard-
son, Burges, and Renshaw2013] argued that having ob-
jective metrics for the evaluation phase is a crucial step
towards machine reading comprehension.

2. A correct answer to a question can be any sequence of to-
kens from the given text: instead of having a single token
as an answer such as in close style datasets or in [Richard-
son, Burges, and Renshaw2013] human annotated dataset,

in SQuAD the answers can be composed of sequences of
tokens. For example, in Figure 6 above, the last ques-
tion has a multiple token answer (i.e. “within a cloud”).
Questions whose answers span multiple tokens are more
challenging than those with single-token answers [Wang
and Jiang2016]. These sequences of tokens can be quite
similar, thus making more difficult the recognition of the
correct answer. The evaluation of the models is performed
with this criteria, so it is more difficult to achieve a good
performance. It is worthwhile to mention that another dif-
ference between SQuAD and the cloze style datasets is
that in SQUaD the answers are entailed by the passage,
while in the cloze style datasets the answers are merely
suggested.

3. Questions and answers in SQuAD were created by hu-
mans, hence they are more realistic: unlike other datasets
such as [Hermann et al.2015] and [Hill et al.2015], whose
questions and answers were created automatically and
synthetically, SQuAD’s were created by humans through
crowdsourcing.

Moreover, ¿99% of the questions are factoid questions,
thus allowing relatively uncontroversial evaluation stan-
dards for answering them.

In order to obtain a high-quality dataset, the collection
process was divided in three stages:

• Curating passages: to retrieve high-quality arti-
cles, [Rajpurkar et al.2016] used Project Nayuki’s
Wikipedia’s internal PageRanks to obtain the top 10000
articles of English Wikipedia to we sample at random
536 articles uniformly. From each of these articles, they
extracted individual paragraphs larger than 500 charac-
ters obtaining 23,215 paragraphs covering a wide range
of topics, from musical celebrities to abstract concepts.

• Crowdsourcing question-answers on those passages: in
this phase they employed crowdworkers to create ques-
tions through a Daemo platform with Amazon Mechan-
ical Turk as its backend. Candidates were required to
have a 97% HIT acceptance rate, a minimum of 1000
HITs, and lived in the United States or Canada. They
were asked to ask and answer in 4 minutes up to 5 ques-
tions on the content of that paragraph and paid 9 USD
per hour. The questions had to be entered in a text field,
and the answers had to be highlighted in the paragraph
as shown in Figure 10.



Figure 10: SQuAD’s crowd-facing web interface

Is it worthwhile noting that the interface encourages the
worker to use his own words to ask the questions, to
avoid using the same words as in the paragraph (also
disabling copy-paste functionality on the paragraph)
and to ask hard questions. This improves SQuAD’s
quality and therefore its ability to meaningfully eval-
uate machine reading comprehension. The task was re-
viewed favorably by crowdworkers, receiving positive
comments on Turkopticon.
• Obtaining additional answers: the complete dataset was

splitted into train, development and test subsets. To
get a proxy of human performance on SQuAD and to
make the evaluation phase more robust, [Rajpurkar et
al.2016] collected at least 2 additional answers for each
question in the development and test sets. In the sec-
ondary answer generation task, each worker was shown
only the questions along with the paragraphs of an ar-
ticle, and asked to select the shortest span in the para-
graph that answered the question. If a question was not
answerable by a span in the paragraph, workers were
asked to submit the question without marking an an-
swer. The recommended speed was 5 questions for 2
minutes, and paid at the same rate. Over the devel-
opment and test sets, 2.6% of questions were marked
unanswerable by at least one of the additional workers.

As have been shown, SQuAD promises to be a scalable,
realistic and high-quality dataset in which models can be
trained and evaluated on its machine reading comprehension
capabilities. Hence, in the following section we will discuss
the second recent major effort towards the advance of ma-
chine reading comprehension: the development of models.
We will orientate the section towards building a model for
the SQuAD dataset, as it represents the most recent advance
in machine reading comprehension.

Models
We can classify the machine reading comprehension models
into traditional approaches and novel approaches. Once
these approaches have been discussed, the current SQuAD
baseline and state-of-the-art will be presented.

Traditional approaches.- These models are based on ei-
ther hand engineered grammars, or information extrac-
tion methods of detecting predicate argument triples that

can later be queried as a relational database [Hermann et
al.2015]. Usually a pipeline of NLP models is built; they
make heavy use of linguistic annotation, structured world
knowledge and semantic parsing.

As of the data they used to be trained, approaches in Com-
putational Linguistics have failed to manage the transition
from synthetic data to real environments, as such closed
worlds inevitably fail to capture the complexity, richness,
and noise of natural language [Hermann et al.2015]. In ac-
cordance with these findings, in this document we focus only
on the novel approaches.

Novel approaches.- Work on scalable data such as cloze
style data together with advances of applying end-to-end
neural network models in NLP, has shown that neural net-
work based models hold promise for modelling reading
comprehension.

[Hermann et al.2015] used recurrent neural networks
together with attention based mechanisms to estimate the
probability that a word type a from document d answers
query q : p(a|d, q). Vector embeddings of a document
and query pair (d, q) are needed. They came up with three
different Long Short Term Memory deep learning models
(LSTM)4: the Deep LSTM Reader, the Attentive Reader and
The Impatient Reader. Figure 11 shows the attention heat
maps from the Attentive Reader for two correctly answered
queries.

Figure 11: Attention Reader heatmaps

The models differ in the direction of how they propagate
the dependencies over long distances. The Attentive and
Impatient readers to propagate and integrate semantic infor-
mation over long distances. They learned to read real doc-
uments and answer complex questions with minimal prior
knowledge of language structure. The major shortcoming is
that they predict a single token. But the answers in SQuAD
contain multiple tokens, so, as it is, this approach is unfea-
sible. However, the end-to-end training is worthwhile and
the attention mechanism used is just one instantiation of a
very general idea which can be further exploited in SQuAD.
[Chen, Bolton, and Manning2016] develop a similar model
with some modifications than enhance its performance.

4Long Short Term Memory network (LSTM) is a type of re-
current network that can keep long-range dependencies, unlike re-
current networks that suffer from exploding or vanishing gradients
with such dependencies



Another end-to-end training approach is the sequence-to-
sequence neural models, which have been successfully ap-
plied to many NLP tasks [Yang, Salakhutdinov, and Co-
hen2016]. These models are very flexible, it is possible
to generate single or multiple-token answers, thus suitable
for SQuAD. Although SQuAD is larger than most cur-
rently available reading comprehension datasets, sequence-
to-sequence models usually are built on datasets with a
greater scale than the one provided by SQuAD. However
this is still an approach that can be explored.

Memory networks architecture [Weston, Chopra, and Bor-
des2014] is an alternative end-to-end approach that focus on
the memorization process with which recurrent neural net-
works are known to struggle. According [Weston, Chopra,
and Bordes2014] memory networks reason with inference
components combined with a long-term memory compo-
nent; they learn how to use these jointly. The core idea
behind these networks is to combine the successful learning
strategies developed in the machine learning literature for in-
ference with a memory component that can be read and writ-
ten to. They used and evaluated these models for question
answering (QA) tasks, not reading comprehension tasks, but
they showed an interesting reasoning power (e.g. under-
standing the intention of verbs) that can be further explored
for the SQuAD challenge. [Hill et al.2015], [Sukhbaatar et
al.2015], [Kumar et al.2015] also used these kind of net-
works. It is important to point out that currently these mod-
els suffer from lack of scalability on large datasets [Wang
and Jiang2016]. But we don’t know a priori if this approach
will work with SQuAD, because usually QA datasets run
larger than reading comprehension ones, so the lack of scal-
ability may not apply to SQuAD.

Pointer Networks have been adopted in a few studies in
order to copy tokens from the given passage as answers
[Kadlec et al.2016], [Trischler et al.2016].

Baseline.- [Rajpurkar et al.2016] proposed the first base-
line model over SQuAD but it is below human performance
by more than 35 percentual points (F1 score of 51% vs 86.8
% ). And 40.4% in exact match vs 82.3% of human per-
formance. The proposed model is a logistic regression built
with handcrafted features. [Rajpurkar et al.2016] found that
the model performance is very sensitive to the following fea-
tures:

• Lexicalized and dependency tree path features: these are
the features that contribute in greater proportion to the
performance of the model.

• Answer types: the model performs better on answers re-
garding number and entities, while human performance is
more uniform.

• Syntactic divergence between the question and the sen-
tence containing the answer: the performance of the
model decreases with with increasing divergence while
human’s performance remains almost constant.

State-of-the-art.- In the past months there have been ad-
vances on the SQuAD challenge outperforming the base-
line.

[Wang and Jiang2016] proposed two new end-to-end
neural network models for machine comprehension, which
combine match-LSTM and Pointer Networks to handle the
special properties of the SQuAD dataset. They used match-
LSTM to match a question and a given passage and Pointer
Network in a different way than [Kadlec et al.2016] and
[Trischler et al.2016] to generate answers that contain multi-
ple tokens from the given passage. They achieved the state-
of-the-art performance of an exact match score of 59.5% and
an F1 score of 70.3% on the unseen test dataset, hence out-
performing [Rajpurkar et al.2016] baseline model.
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