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Abstract—TIn this survey we explore the most novel and relevant
approaches for malware detection in Android Operative System
using Machine Learning techniques. Specifically, we reviewed
the most cited published works from 2012 to 2016. The target
audience is machine learning researchers, therefore we first
provide a substantial general overview on mobile device security,
as well as on Android Operative System and security. The survey
is organized by the type of analysis that is performed: static,
dynamic, permission-based or hybrid. Along with a description
of each work, we analyze Machine Learning relevant elements:
the features, the dataset, the models and the performance results.
We additionally provide a comparative table with all the surveyed
works with additional elements (such as the scope, type of
malware, monitoring environment and type of learning), which
can be consulted here. We conclude the survey with some
opportunity areas regarding a Machine Learning approach for
Android malware detection, together with interesting venues of
work regarding a general approach to detect Android malware.

Index Terms—Malware detection, Android security, Android
Operative System, Security in mobile devices, Machine Learning,
Classification, Clustering, Dimensionality Reduction, Static Analy-
sis, Dynamic Analysis, Permissions-based analysis.

I. INTRODUCTION

Mobile Devices are the fastest growing consumer tech-
nology, with 1.9 billion worldwide reported users in 2014,
surpassing for the first time PC users, according to a report
from Morgan Stanley Research.

In addition to the impressive number of users, people is
spending more time on the mobile devices: in 2011, for the
first time ever, people spent on average more time using mobile
applications than browsing the web: 81 minutes vs 74 minutes
[Rashidi and Fung2015].

In contrast to conventional personal computers, applications
are essential for the mobile device experience, as they pro-
vide entertainment, productivity enhancement, healthcare, on-
line dating, home security and business management. Hence,
“mobile device applications are becoming increasingly so-
phisticated, robust, life-engaging and also privacy-intrusive”

[Rashidi and Fung2015]]. So, while once limited to simple
voice communication, the mobile device now allows multi-
ple and very different functionalities. This implies that very
sensitive information is stored: personal, financial or laboral
such as contacts, messages, photos and passwords. Usually,
users are careless, they think of the mobile device as the
simple communication device it was years ago. This landscape
provides a very attractive field for security attacks [Rashidi and
Fung2015].

For example, malicious software, for example Malware,
can not only steal private information such as contacts list,
text messages or location, but it also can cause financial loss
by making camouflaged premium-rate phone calls and text
messages, or even stealing credit card information [Rashidi
and Fung2015]]. While malware was initially created to attain
notoriety or simply for fun, nowadays it is empowered by
financial incentives [Demme et al.2013]].

Android is currently the most popular smartphone operating
system: 1.1 billion devices running on Google’s Android
Operating System in 2014, marking its >80% of mobile
market share. Additional to the number of users, the number
of Android appplications reached 1.6 million in early 2015,
beating its major competitor, Apple Apps Store [Rashidi and!
Fung2015]).

[Rashidi and Fung2015] says that “it is prohibitive for
app marketplaces such as Google App Store, to thoroughly
verify if an app is legitimate or maliciuos. Mobile users are
left to decide for themselves whether an app is safe to use”.
The problem is that users are neither informed nor attentive:
in a survey of 308 Android users they showed low attention
and comprehension rates, as only 17% of participants paid
attention to permissions during installation, and even worse,
3% of respondents could correctly answer all three permission
comprehension questions [Felt et al.2012]]. These results also
showed that Android’s permission system, that was supposed
to notify users about the risks of installing applications, actu-
ally was not helping the user make adequate security decisions.


https://docs.google.com/spreadsheets/d/11yRmKsm4cK1SyDe4WqZL_iDuGkaVvE5uOXCNypTUNIw/edit#gid=0

The fact that, unlike iPhone Operative System users, Android
Operative System users do not have to root or jailbreak their
devices to install applications coming from from unknown
sources, puts more pressure on the importance of the security
of Android.

On the one hand, even though important advances have
been made on malware detection in traditional personal com-
puters during the last decades, adopting and adapting those
techniques to smart devices is a challenging problem. For
example, power consumption is one major constraint that
makes unaffordable to run traditional detection systems on the
device, while externalized (i.e. cloud-based) techniques rise
many privacy concerns [Suarez-Tangil et al.2014b].

On the other hand, relying on currently developed ap-
proaches is not enough because intelligent malware keeps
modifying and adapting very rapidly, so detecting it becomes
more challenging and difficult [Narudin et al.2016f|. So, tradi-
tional approaches such as the antivirus is not very effective,
since it requires continuous signature database updating [Sohr
et al.2011]]. Additionally, antivirus solutions tend to require
important resource consumption and software complexity
[Narudin et al.2016], hence unviable for mobile devices.

Therefore we need automatic, reliable and scalable mecha-
nisms. Historically, machine learning classifiers have played a
part in the development of intelligent systems for many years.
The classifiers are provided with a labelled dataset, trained on
it and then they produce a model, allowing the labelling of
new data. [Narudin et al.2016] claims that “adopting machine
learning classifiers has proven to enhance detection accuracy”.

In response to these needs, in this survey we explore the
most novel and relevant approaches for malware detection
in Android Operative System using Machine Learning tech-
niques from 2012 to 2016. The target audience is machine
learning researchers, therefore we first provide in Section
II a substantial general overview on mobile device security,
as well as on Android Operative System and security. The
user that is acquainted with such overview can skip this
section. The surveyed techniques come in Section III; they
are organized by the type of analysis that is performed: static,
dynamic, permission-based or hybrid. Along with a description
of each work, we analyze Machine Learning relevant elements:
the features, the dataset, the models and the performance
results. We additionally provide a comparative table with all
the surveyed works with additional elements (such as the
scope, type of malware, monitoring environment and type of
learning), which can be consulted here. We conclude in Section
IV with some opportunity areas regarding a Machine Learning
approach for Android malware detection, mainly regarding the
following: the small size of the datasets, the imbalance class
problem, the extremely high number of features, the lack of
consistency of the evaluation metrics and error analysis and the
need of integrating clustering, dimensionality reduction and

classficiation methods into one single model. Also we suggest
interesting venues of work regarding a general approach to
detect Android malware including: bigger malware datasets,
a comprehensive understanding of the currently available
datasets, more approaches than integrate the three types of
analysis, more hardware-based approchaes, the additional clas-
sification of types of malware (trojans, worms rootkits, etc),
discussion on the usability, scalability and compatibility with
other Operative Systems, consideration of computational com-
plexity, overhead and efficiency, which are specially critical for
mobile devices.

II. MOBILE DEVICE SECURITY AND ANDROID OPERATIVE
SYSTEM AND SECURITY OVERVIEW

A. Mobile device security

According to NIST Computer Security Handbook, Com-
puter Security is defined as “the protection afforded to an
automated information system in order to attain the applicable
objectives of preserving the integrity, availability, and confi-
dentiality of information system resources” [Stallings2007].

The OSI security architecture allows to organize the
task of providing security using the following concepts
[Stallings2007]:

o Security attack/threat: defined as any action that compro-
mises the security of information.

o Security mechanism: defined a process that is designed
to detect, prevent, or recover from a security attack.

According to [Stallings2007], maybe the most sophisticated
threats to computer systems are programs that are built to
exploit vulnerabilities in computing systems. Such threats are
referred to as malicious software, or malware. In this context,
we consider threats to application programs, utility programs
and kernel-level programs [Stallings2007].

The most important examples of malware in mobile devices
are virus, worms, Trojans, rootkits and botnets. Virus injects
malicious code into existing programs that is replicated to
other programs when the code is executed. Worms are spread
over the network and exploit vulnerabilites on the computers
that are connected to the network. Trojans appear to provide
functionality to hide its malicious content. Rootkit directly
infects the Operative System, so they can operate freely and
for longer periods; usually they hide malicious user-space
processes/files, installing Trojans or disabling ﬁrewall and
antiviruses. Finally, botnet is a network of infected devices
under command and control of an attacker [Stallings2007|]

A firewall is a barrier that dictates which traffic is authorized to pass in
each direction. It can operate at the level of IP packets, or at a higher protocol
layer [Stallings2007].


https://docs.google.com/spreadsheets/d/11yRmKsm4cK1SyDe4WqZL_iDuGkaVvE5uOXCNypTUNIw/edit#gid=0

[La Polla et al.2013]]; usually they are used to send spam or
perform Denial of Service attacks (DoS)|

Mobile malware can disseminate through various paths,
such as a spam SMS with a link to a website where a user is
able to download the malicious code, or a spam MMS with
infected attachments, or even infected programs that are sent
and received via Bluetooth [La Polla et al.2013]].

Some malware fill devices with unwanted advertisements
to gain revenue for the malware creator. Others can dial and
text so-called premium services resulting in extra phone bill
charges. Some other malware is even more insidious, hiding
itself (via rootkits or background processes) and collecting
private data like GPS location or confidential documents.
[Demme et al.2013]].

Malware detection techniques can be classified in Static
Analysis, Dynamic Analysis and Permission-based Analysis. Is
it also possible to have an hybrid of them [[Amos et al.2013].

o Static Analysis: inspects software properties and source
code without executing the application, so it is performed
using parameters such as code analysis, taint tracing and
control flow dependencies [Dua and Bansal2014]. It is
inexpensive, thus amicable to memory-limited mobile
devices, but obfuscation, polymorphism and encryption
techniques embedded in software makes it difficult. For
example, software typically use static characteristics of
malware such as suspicious strings of instructions in
the binary to detect threats. Unfortunately, it is quite
easy for malware writers to produce many diferent code
variants that are functionally equivalent, both manually
and automatically- For instance, one malware family
in the AnserverBot dataset of [Demme et al.2013[] had
187 code variations. It also produces less information,
thus limiting the extraction of possible features that can
be used by machine learning algorithms [Narudin et
al.2016]). This type of analysis can be classified according
to the way of detection [Dua and Bansal2014]:

— Misuse detection: uses a signature for detection of
malware based on security policies and rule-sets by
matching of signatures.

— Anomaly detection: uses algorithms to identify mal-
ware based on certain features, so signatures are not
needed. Surprisingly, Machine Learning algorithms
commonly appear in this class because they are use-
ful to learn the features or characteristics of known
malwares and predict unknown malware based on
this learning [Dua and Bansal2014].

o Dynamic Analysis: it monitors malware behaviour when
the application is executed. It can be performed using

2In a DoS, the attacker seeks to make a network resource unavailable to
its intended users -for example an online store) by disrupting the services of
a host connected to the Internet

parameters such as native code, system calls EL network
traffid’] used memory and user interaction [Dua and
Bansal2014f]. It also produces more information than
static analysis, which can be used to build or enrich
features [Narudin et al.2016]. Obviously this comes with
the associated overhead [Demme et al.2013]], which is
an important shortcoming for mobile devices resource-
constrained nature. Hence, dynamic analysis commonly
is expensive and more difficult to scale. Additionally,
some malwares even perform transformation attacks that
changes not only their code but also its behavior during
runtime [Wu and Hung2014].

o Permission-based analysis can be done with the help of
permissions specified in the manifest file.
Permission-based: Permissions are listed in some file
and control the access to several types of resources in
the device. Users have the right to allow or deny the
installation of applications but the individual permissions
are already defined. It is possible to detect malware using
the permissions in the Manifest.xml.

It is important to point out that security tools and mecha-
nisms used in personal computers are not feasible for applying
on mobile devices due to its enormous resource consumption
and battery depletion [Burguera et al.2011]], which puts more
pressure on the energy demands and constraints.

B. Android Operative System

Just like all operating systems, Android Operative System
enables applications to make use of the hardware features
through abstraction and provide a defined environment for
applications [Brahler2010].

Android Operating System can be visualized as a stack of
software components. Its source code is released by Google
under open source licenses [Brahler2010]. Its architecture is
formed by 4 main layers placed one on top of each other
that can be visualized in Figure [I] (taken from [Rashidi and
Fung2015]):

1) Linux Kernel: placed at the base, it is the base Operating
System. This means that all requests made from upper
layers should pass through the kernel using a system call
interface before they’re executed in hardware [Burguera
et al.2011]].

2) Libraries and runtime environment: Android runtime
combines the core libraries of the Java Virtual Machine
and Dalvik Virtual Machine, which is responsible for
running Android applications in the operating system.

3A system call is how a program requests a service from the operating
system’s kernel, so, analyzing this may help to identify unauthorized requests.

4The idea is that almost every every application, malign or benign must
connect no the network. So network traffic may help to identify malign
behaviour



3) Application Framework: it puts a particular structure on
developers, for example, it doesn’t have a main() func-
tion or single entry point for execution. The developers
must design applications in terms of components, which
can be seen in Figure E] [Enck et al.2009].

4) Applications: they are written in Java and executed in its
own Dalvik Virtual Machine. They involve both the pre-
installed applications provided with a particular Android
implementation and third-party applications developed
by individuals -hence unofficial- app developers [Rashidi
and Fung20135].

Applications

Native Android App Third Party Apps

Application Framework

Activity Manager | |  Window Manager Notification Manager View System

Package Manager Resource Manager Content Provider

Libraries Android Runti
ndroid Runtime
SQLite WebKit OpenGLES
Core Libraries
Surface
FreeType Manager Media Framework .
Dalvik Virtual Machine
SSL SaQL libc
Linux Kernel
Display Driver WiFi Driver Audio Drivers Binder(IPC)

Drivers

‘ Power Management Process Management Memory Management

Fig. 1. Android operating system architecture (taken from [Rashidi and
Fung2015])

We briefly describe Android’s application structure with
focus on the important files, taken from [Peiravian and
Zhu2013|:

o Android Application Package file (APK). Each Android
application is compiled and packaged in a single file that
includes all the application code (.dex files), resources,
assets, and manifest file. It uses the .apk extension, so it
is easily found.

o Android Manifest file: Commonly refered as Android-
Manifest.xml, is one of the most important files. It
contains all essential information about the Application.
Once an application is run, the first file the Android
system looks at is the Manifest file. It can be visualized
as a roadmap to ensure that the application can work
properly in the Android system. It is worth noting that
the Android Operative System will not let an applica-
tion to access permissions, resources and features that
are not specified in the AndroidManiefest file. So, the
AndroidManifest.xml provides the first hand information
to understand the security settings and characteristics of
the Apps. To see a more detailed explanation on Android
Manifest file, please refer to [Enck et al.2009].

We will discuss now how the security is organized, managed
and deployed in Android.

C. Security in Android

Android applications make use of advanced hardware, in-
novative software and a large amount of data with the final
objective of bringing value to the consumers. So, the platform
must offer an environment that guarantees the security of the
user, the data, the device, the network and the applications
themselves. Despite the fact that Android is based on Linux,
it is not straightforward to follow the same desktop analysis
approach for Android security [Yan and Yin2012].

There are several reasons of why Android security is spe-
cially critical:

o Number of users of Android OS: 1.1 billion devices
running on Google’s Android Operating System were
shipped in 2014, marking its >80% of mobile market
share.

e Number of Android Applications: 1.6 million in early
2015, surpassing its major competitor, Apple Apps Store
[Rashidi and Fung2015]].

o Number of Android-targeted malware: In 2013 F-secure
reported 827 new families or variants of mobile malware;
most of them were based on Android platform [Kang et
al.2015]].

e Number of Android threats and vulnerabilities: [Felt et
al.2011] found that one of the main threats posed by
malicious Android applications are privacy violations
which leak sensitive information such as location infor-
mation, contact data, pictures, SMS messages, etc. to
the attacker. But even applications that are not mali-
cious and were carefully programmed may suffer from
such leaks, for instance when they contain advertisement
libraries. Additionallt, threats can occur in any of the
above-mentioned layers of Android OS stack, such as
application or framework layer.

o Third-party market applications: since Android OS is an
open source platform, it allows the installation of third-
party applications, with regional and international app-
stores.

« Developers decision power: few of them fully understand
their privacy implications [Arzt et al.2014].

o Users decision power: on whether an app is safe to use.
This puts too much responsibility on the end users.

o Android specific characteristics: Android Operative Sys-
tem is different in several ways: application framework,
touch-screen based graphical user interface, and manage-
ment of personal data [Wu and Hung2014]].

Android protects applications and data through a combina-
tion of two enforcement mechanisms, one at the system level
placed on the Linux Kernel base of Figure [I| and the other as



a middleware placed between the Kernel and the Application
level. This middleware defines the differentiated and core
Android security framework but it is built on the fundamental
guarantees granted by the underlying Linux system [Enck et
al.2009]|.

Android security model can be considered system centric
[Shabtai et al.2012] as it is highly based on a permission-
based mechanism. There are about 130 permissions that
govern access to different resources. An Android application
requires several permissions to work. Applications statically
identify the permissions that define their right to resources
and information, and interfaces at installation time [Peiravian
and Zhu2013]]. However, the application/developer has limited
ability thereafter to decide to whom those rights are given or
how they are used. Consequently, an essential step to success-
fully install an Android application into a mobile device is to
allow the installation of all the permissions requested by the
application. In fact, before an application is installed, a list of
permissions requested by the application is prompted onto the
screen and it asks the user to confirm them for installation.

Although permission requests are useful for users to prevent
possible misuse of resources by applications, users often have
rare knowledge to determine if permissions might be harmful
or not. The application may request network access, including
Wifi and SMS service, which are normal requests, whereas
some malware steal bandwidth or other useful information.
So it’s very difficult for users to determine, at the first place,
whether an App is a malware by using the permission request
exclusively [Peiravian and Zhu2013|.

At the system level, Google publicly announced that a se-
curity checking mechanism is applied to each application that
is uploaded to their market. The open design of the Android
operating system allows a user to install any applications he
want no matter that they are downloaded from an untrusted
source. Yet, the permission list is still the minimal (and almost
only) defense for a user to detect whether an application could
be potentially harmful. For example, a careful user can choose
not to install an application if he notices that it unnecessarily
requests permission to his personal contact or other private
resources such as its location [Peiravian and Zhu2013].

Google further classifies adds permission protection levels
and categorize the application into normal, dangerous, signa-
ture, and signature/system [Huang et al.2013|]. However, this
baseline security framework has not prevented the proliferation
of malicious applications in Android Operative System.

For a more exhaustive explanation of additional security
refinements taken by Android, check the following sections
from [Enck et al.2009]]: public vs private components, broad-
cast intent permissions, content provider permissions, service
hooks, protected APIs, pending intents and URI permissions.

III. SURVEY

In addition to the mechanism to detect malware, a critical
challenge is the need for the collection and experimentation
with a large dataset for training malware classifiers [Amos et
al.2013]]. Is difficult to collect real Android malware mainly
for two reasons: 1. Android malware is a novel research area
and 2. Due to the malign nature of this type of data, labelled
examples are not commonly released or revealed. So, before
2011 there have been no tangible datasets available to the
whole research community. Researchers used to build their
own artificial malware or used a crawler to collect apps from
the internet. [Burguera et al.2011]] presented a crowd-sourcing
system to collect real samples of application execution traces.
Also, in 2012 it was published a comprehensive dataset called
MalGenome that comprises of 49 different Android malware
families with a total of 1,260 malware samples [Narudin et
al.2016].

Moreover, [Amamra et al.2012]| points out the importance of
an algorithmic and replicable approach: “malware classifiers
must be trained and evaluated in a repeatable and consistent
manner with large-scale experimentation and automation in-
frastructure” [Amamra et al.2012].

Due to the relevance of the problem, several surveys on
mobile security threats and mechanisms have been published.
Such mechanisms are different in nature and in its methods
and can be classified into different categories. We can men-
tion some of the most recent works: [Sujithra and Padma-
vathi2012]], [Amamra et al.2012], [[La Polla et al.2013|], [Dua
and Bansal2014]), [Rashidi and Fung2015], [[Faruki et al.2015],
[Khan et al.2015]]. Some are focused specifically on Android,
for example [Faruki et al.2015]] and [Rashidi and Fung2015]],
and some others are broader, such as [La Polla et al.2013]
and [Suarez-Tangil et al.2014b]|. In these works, authors have
organized and classified their work using: feature misuse,
attack goals, distribution, infection, privilege acquisition, type
of analysis, type of detection [Faruki et al.2015], etc. As of
our knowledge, there is no published survey that is focused
on a machine learning analysis of the defense mechanisms
against Android threats. We choose to classify the survey using
the type of analysis that is performed, i.e. static, dynamic,
hybrid or permission-based, instead of a machine-learning type
classification because we realized that this analysis approach is
widely used by researchers in the malware detection literature,
so it will give us more insights on how and where the machine
learning techniques are really being used. We ordered the
reviewed works by year of appearance.

To detect malware, static analysis commonly utilizes the
manifest file of the Android applications discussed above
and retrieves information such as permissions and API calls.
Dynamic analysis focuses on the run-time behavior and the
system metrics of the applications while running. Additionally,
most of the dynamic analysis methodologies depend upon



executing the applications in an emulator to collect the run-
time information [Wu and Hung2014]].

A. Machine Learning for Static Analysis

[Hanna et al.2012] presented Juxtapp, a scalable system
to perform automatic code similarity analysis on Android
applications. The similarity approach helps to detect code
reuse, hence, it can determine if an app contains copies of
buggy code that may indicate piracy, or is an occurrence of
known malware. They did not addressed a classification prob-
lem as most of the works we will discuss later, instead they
addressed a clustering and dimensionality-reduction problem.
First, they divided the code in k-grams sequences to create
many features, then they used feature hashinf] to reduce
the dimensionality of the feature set. Later, they computed
Jaccard similarity between the feature sets, together with
agglomerative hierarchical clustering to group the applications.
The system was evaluated using more than 58,000 Android
applications and demonstrated that it is able to scale. Juxtapp
detected 463 applications with buggy code reuse of Google-
provided sample code (that may lead to serious vulnerabilities
in real-world apps). It also detected 34 instances of known
malware (specifically trojans) and 13 variants of the Gold-
Dream malware, as well as pirated variants of a popular paid
game with notable code variation from the original. While
this approach is interesting because it performs not-supervised
learning, it doesn’t perform a supervised phase, hence it is
difficult to compare its performance with other methods.

[Wu et al.2012] is a system aimed to label and classify
the applications, so they address both a clustering and classi-
fication problem. They used the following features: requested
permissions, intent messages from each application’s manifest
file, and regards components such as activity, service collected
from permissions and system calls. They applied k-means
algorithm to cluster the observations. The number of clusters
is chosen using Singular Value Decomposition (SVD) method
on the low rank approximation. Finally, they used k-nn for the
classification task. The dataset consists of 1,500 benign and
238 malign from Contagio Mobile platform. The approach
obtained 97.8% of accuracy but only 87% of recall, which
means that from 100 real-malware samples, DroidMat is able
to detect 87 samples and the other 13 are classified as benign,
which could have serious consequences. So, DroidMat should
be used -if used at all because there are other static techniques
that have better performance- as a pre-filter, not as a unique
classification method.

[Huang et al.2013|] followed an approach that monitors the
application permissions, using features from the corresponding
application package file (APK) and the Android Manifest
file discussed above. They addressed a clustering problem,

SFeature hashing applies a hash function to features, providing a fast way
of vectorizing features.

followed by a classification problem. Rule-based was used for
clustering and labeling. They applied several machine learning
classifiers: AdaBoost, Naive Bayes, Decision Tree and Support
Vector Machine. The dataset consisted of 124,769 benign and
480 malign applications. The results were 81% in the recall for
naive bayes classifier, that is, from each 100 malware samples,
the method is unable to detect 19 of them for the naive bayes
classifier. This result in accuracy is low, so it must be used as a
quick filter to identify malicious applications. The method still
requires a second pass to achieve reasonable results. Also, as
labeling is rule based, so it is difficult to scale and generalize.

[Aafer et al.2013]] propose DroidAPIMiner, which is
claimed to be a robust and lightweight detection mechanism.
To detect malware they address a classification problem. The
selected features are gathered using API level information
that is within the bytecode. The authors claim that it conveys
substantial semantics about the apps behavior. The features
include critical API calls (choosing the most frequent), their
package level information, as well as some dangerous pa-
rameters. The dataset has 20,000 benign applications, 3,987
malware apps obtained from McAfee and Android Malware
Genome Project. They used Decision trees, k-nn and Support
Vector Machine. The results showed that K-nn achieves an
accuracy (i.e a detection of correct cases, both malware and
non-malware) of 99%, and a True positive rate of 97.8%,
meaning that the miss rate is just 2.2 %, so they are able to
detect almost all the malware. A potential shortcoming of this
proposal is that new malware might easily include more benign
API calls into their code with the objective of camouflaging
its malign behaviour.

[Peiravian and Zhu2013] tried a combined use of permis-
sions and API calls of Android applications to build high
dimension feature vectors. They addressed a classification
problem for malware detection. The permission is obtained
from each Application’s profile information and the APIs are
obtained from the packed App file by using packages and
classes to be able to represent API calls. The dataset consists
of 1200 real-word benign apps and 1200 malware apps. They
used Support Vector Machine, decision trees (specifically J48)
and Baggingﬂ Bagging has the best performance in classifying
all created data sets with respect to AUC (>96%). Because
permission settings and APIs are always available for each
application, this system can be generalized to other mobile
devices in addition to Android.

[Arp et al.2014] was published in response to heavy
applications that were prohibitive for mobile devices. The ob-
jective is to predict malware, hence it addresses a classification
problem. It collects permissions, hardware access, API calls,
network address, etc, generating 545,000 features. Dataset
consists of 123,453 benign applications and 5,560 malware

SBootstrap-based ensemble method that creates base classifiers with the
objective of ensembling them by training each base classifier using a random
redistribution of the training set



samples were collected. They used a Support Vector Machine,
achieving 94% of accuracy and a very low False Positive
Rate (i.e. a false alarm) of 1%. On five popular smartphones,
the method required 10 seconds for an analysis on average,
so it suitable to run on applications directly on the device.
This work tackles the overhead and efficiency problem, which
is loosely tackled in many works. Unlike most of the static
methods we’ve discussed, it can identify signs of obfuscation,
but the code is not fully available to be analyzed. The number
of features is overwhelmingly high, almost five times larger
than the number of observations, so this dataset potentially
suffers from the curse of dimensionalityﬂ In fact, this is the
reviewed dataset with the largest number of features.

[Arzt et al.2014]] introduced FLOWDROID, a static taint-
analysis mechanism for Android applications. The authors ad-
dressed a classification problem to be able to predict malware.
FLOWDROID is capable of modelling Android-specific chal-
lenges like the application cycle or callback methods, hence
reducing missed leaks or false positives (i.e. false alarms).
Novel on-demand algorithms helped FLOWDROID maintain
high efficiency. The authors also proposed DROIDBENCH,
an Android-specific platform to evaluate the effectiveness
and accuracy of taint-analysis tools for applications. FLOW-
DROID was tested using DROIDBENCH, achieving 93%
recall and 86% precision. This means that of each 100 real
malware samples, it fails to detect 7, and that of each 100
samples that were predicted as malware by FLOWDROID, 86
really were malware (14 were a false discovery). Additionally,
FLOWDROID also found leaks in a subset of 500 apps
from Google Play and about 1,000 malware apps from the
VirusShare project.

[Yerima et al.2014a]] proposed a static analysis of Android
malware using Bayesian classification models built from min-
ing data generated by automated reverse engineering of the
Android application packages employing a Java implemented
custom package analyzer. They addressed a dimensionality
reduction problem followed by a classification problem. The
dimensionality reduction was performed using an Information
Theory approach, specifically, the Information Gain method,
which calculates the entropy generated by each feature; they
retrieved only the 25 most frequent features. The classification
problem was approached using three models using the follow-
ing combination of features: standard Android permissions in
the Manifest files, code properties indicative of potential ma-
licious payload and both standard permissions and code prop-
erties. The models were built by extracting these properties
from a set of 1,000 samples of 49 Android different malware
families together with another 1,000 benign applications across
a variety of categories. So, unlike other datasets, this dataset is
not unbalanced, as 50% of the applications are malware. But
this approach of building a balanced set is artificial, because
actually malware is scarce compared to the non-malware.

"When the dimensionality increases, the volume of the space increases so
fast that the available data becomes sparse, generalizing poorly to new data

Evaluation was performed using the confusion matrix usual
metrics. Results showed that mixed-based and code property-
based models are a better choice than the permissions-only
model. Specifically, the mixed-based approach reported an
accuracy of 93% and an area under the ROC curve of 0.977;
this metric can be used to easily compare methods.

[Suarez-Tangil et al.2014a] proposed a text mining ap-
proach to classify malware samples into families based on the
code structures. So they addressed both a classification and
clustering problem. But this work differs to the previously
discussed works in that it classify into families of malware
(namely 49), not into malware/not-malware. They performed
a statistical analysis of the distribution of such structures
over a large dataset of real examples. They found strong
closeness to some questions that are common in automated
text classification and other information retrieval tasks, so they
adapted the standard Vector Space Model commonly used in
these areas (i.e. vector embeddings). They measured similarity
between malware samples, applied hierarchical clustering and
then classified unknown samples into known families using k-
nn. Although the technique is claimed to be fast and potentially
scalable, it was only tested using only 1247 examples. One
of the main shortcomings of this approach is that it has
too many features, exactly 84,854 and too few observations.
This potentially lead to the curse of dimensionality mentioned
above. Regardless of this, the method reached a classification
error of just 5.74%, which is very high considering there were
49 possible classes. Another disadvantage is that obfuscation
techniques could change the code syntactic structure of a mal-
ware sample but maintain its malign purpose. So, a semantic
approach may be worthwhile trying.

[Kang et al.2015] proposed a detection system that uses
serial number information from the certificate as a feature. So
this work addresses a classification problem. The classification
is performed two times: first to detect malware and then to
identify the type of malware family. It checks a serial number
and looks for suspicious behavior of SMS, system commands
in the code and permission requests from the Manifest file.
Hence, the features include serial number, information of
the certificate, the application name, requested permission,
component, and intent. 51,179 applications were downloaded
from Google Play and 4,554 malicious applications were
downloaded from Share, Contagio Mobile, and Malware.lu.
They used a Bayesian classification model based on a similar-
ity scoring, detecting the malware with 98% of accuracy and
the family type with 90% of accuracy. Additionally, the system
can help analysts to react efficiently from Android malware’s
threats by detecting and classifying with high accuracy in a
reasonable time. One potential problem of this approach is that
they they assume that P(c; = malicious) = P(c; = benign),
i.e. is equally likely that the the category of the application
is malicious than benign, regardless of the inherent imbalance
status of the dataset (much more benign apps than malign).



While some of the work on static analysis uses tradi-
tional machine learning algorithms for classification problems
(support vector machine, decision trees, k-nn), many of the
uses other approaches such as Bayesian classification mod-
els, and text-mining algorithms ( [Yerima et al.2014b] and
[Suarez-Tangil et al.2014al]). As of the clustering approaches
we can mention the Agglomerative Code similarity and the
hierarchical clustering ( [Hanna et al.2012]] and [Suarez-Tangil
et al.2014a])), respectively). All of the proposed approaches
address at least a classification problem, except [Hanna et
al.2012]] that addressed a feature learning, clustering and
dimensionality-reduction problem. [Suarez-Tangil et al.2014al]
and [Wu et al.2012] followed a sequential approach of cluster-
ing to label the observations and then classification to detect
the malware; this is an interesting approach because as we
mentioned, it is hard to get malware samples. We detect too
many features in most of the works and very small datasets,
which is a serious problem in Machine Learning and many
strategies exist to tackle them, none of them definite. Only
[Hanna et al.2012] and [Yerima et al.2014bf] performed a
dimensionality reduction to reduce the number of features,
mainly using the Information Gain method, but many other
methods exist, such as Principal Component Analysis and t-
SNE.

We now present the surveyed work on Dynamic Analysis.

B. Machine Learning for Dynamic Analysis

[Burguera et al.2011] proposed Crowdroid, a dynamic
analysis system that examines application behaviour to detect
malware (specifically trojans) in Android. It achieves this by
monitoring Linux Kernel system calls and report them to
a centralized server. They address a clustering problem to
obtain labels for malware samples. This framework is also able
to detect self-written malware. They clustered each sample
using k-means to differentiate between benign and malicious
applications. They collected system call traces coming from
an unlimited number of real users based on crowdsourcing;
this yielded 20 feature vectors. The authors recognize that
if applying this system in a mobile device, it might have
an extra overhead in the processor, hence this approach may
lack of usability and generality. As the authors only address a
clustering problem, it remains difficult to compare this method
with others and therefore to assess how good it really is.

[Dini et al.2012] presented MADAM, a Multilevel
Anomaly Detector for Android Malware. MADAM simultane-
aously monitors Android at the kernel-level (that is, system
calls, running processes, free RAM, CPU usage) and user-level
(idle/active, key-stroke, called numbers, sent/received SMS,
Bluetooth/WI-FI analysis) to detect real malware infections
(trojans and rootkits). Therefore they address a classification
problem. The training dataset had 900 standard vectors and
100 malicious ones, which were defined manually based
on predefined characteristics. MADAM detected 93% of the

malware (100% of rootkits). The performance overhead was
assessed as acceptable. One shortcoming of MADAM is that
the malware samples are defined based on rules, which calls
into question its applicability: first, rule-based approaches are
difficult to generalize and scale (as opposed to machine learn-
ing ones), second, malware tends to change its characteristics
over time, so the the rules that once were valid, then may not
be.

[Shabtai et al.2012]] proposed Andromaly, a dynamic de-
tection system that monitors both the smartphone and user
behaviors. They take into consideration several parameters,
from sensors activities to CPU usage. Hence, 88 features
were used to describe these behaviors: CPU consumption,
number of sent packets through the Wi-Fi, number of running
processes, battery level, system and usage parameters. 10
datasets were formed from two different devices by activating
44 applications for 10 minutes. They reduced the dimen-
sionality of the dataset using Chi-Square, Fisher Score and
Information Gain methods. For the classification they tried k-
nn, Logistic Regression, Decision Tree, Bayesian Networks
and Naive Bayes. None of these models performed best in
all three experiments. The best results for the experiment 1
are achieved with the decision Tree: area under the ROC
curve, true positive rate and accuracy > 0.999 which means
that Andromaly correcly classifies almost all the samples.
For experiment 2 the results were not so good: Decision
tree 0.8-0.9 in area under the ROC curve, true positive rate
and accuracy. For experiment 3: Naive Bayes area under the
ROC curve > 0.84. For experiment 4: Naive Bayes >0.88 in
AUC. One interesting characteristic of Andromaly is that it
is open and modular, hence, can easily accommodate multiple
malware detection techniques. It is also light in terms of CPU,
memory and battery consumption. One shortcoming is that
given the different results in each experiments, it remains
difficult to compare Andromaly with other methods.

[Ham and Choi2013]] defined novel features examining
the structural features of Android architecture (defined above
in Figure [I) and selecting the optimal to detect mobile
malware. They addressed both dimensionality reduction and
classification problems. The features include diverse categories
regarding: network, SMS, CPU, power monitor, and process
category and virtual Memor Dimensionality reduction was
applied using the Gain Information algorithm, so 20 features
were finally considered. 11,628 normal instances and 3,876
infected instances (76%, 24%) were collected. The perfor-
mance was tested using four machine learning algorithms:
Random Forest, Support Vector Machine, Logistic Regression
and Naive Bayes. Random forest achieved the highest recall
(99%) and an area under of ROC curve of 99.8 %.

8In Android, when an app is started, only a part of the program is arranged
in the memory and a part of the hard disk is used by making it into virtual
memory. so, peak memory size placed into virtual memory and shared memory
size are also considered as monitoring features



[Amos et al.2013] introduced a system that collects a
number of features such as battery, memory, network and
permission yielding 6,832 feature vectors. The addressed a
classification problem. The authors proposed the STREAM
framework, which was developed to facilitate a rapid large-
scale validation of mobile malware classifiers. They used
Random forest, Naive Bayes, multilayer perceptron, Bayes
net, logistic regression and J48 into a dataset with 1,330
malicious and 408 benign applications. However, the authors
used Android emulator to collect selected features, which was
proved not as accurate as a real device and in fact the authors
claimed that using a real device was impossible. The approach
also suffers from a high number of features and a very small
dataset, which may imply poor generalization.

[Demme et al.2013]] examined the feasibility of building a
malware detector based in hardware using already existing per-
formance counters. They addressed a classification problem to
detect malware. The underlying assumption the authors made
is that run-time behavior that is captured using performance
counters, can be further utilized to detect malware and that
the minor variations in malware that are typically used to
cheat signature software do not significantly interfere with the
proposed method. They built a multi-dimensional time series
data with the count events together with k-nn, Decision Trees,
Random Forest and artificial neural networks. The dataset
uses 503 malware and 210 non-malware programs from both
Android ARM and Intel X86 platforms, achieving a high area
under the ROC curve result. One shortcomming of this work
is that they don’t present quantitative comparable metrics. For
example, they don’t numerically report the true positive rate,
accuracy, etc. Additionally, the ROC curve measure is only
computed below 10% false positive rates. Hence, it is difficult
to compare this proposed approach with others.

[Yuan et al.2014] proposed a Deep Learning methof] that
utilizes more than 200 features extracted from both static
and dynamic analysis of Android applications. The features
fall into three types: required permissions, sensitive API and
dynamic behavior. This apporach addresses a classification
problem. The required permissions and the sensitive API are
analyzed using the .apk file of an Android app yielding 184
features. The dynamic behavior is tested running the .apk
file in a sandbox named DroidBo yielding 18 features.
The deep learning algorithm has 2 phases: the unsupervised
pretraining phase and the supervised back-propagation phase
and a Deep Belief Network was used for both tasks E] The

Deep Learning is a subfield of Machine Learning that aims to model high
level abstractions in data using deep neural networks. It has been successfully
applied to Al-hard problems such as speech and image recognition.

19DroidBox collects the runtime activities such as network data, file read
and write operations, started services and loaded classes, information leaks
using the network, SMS, etc.

"'This Deep Learning model is composed of multiple layers of hidden
units with connections between the layers but not between units within each
layer. When used for pretraining, it can learn to probabilistically reconstruct
1ts 1nputs.

model achieved a 96% accuracy with real-world Android
application sets, above traditional machine learning models
(Support Vector Machine, Naive Bayes, Linear Regression,
Multilayer Perceptron). One shortcomming of this proposal is
that they don not discuss in detail the size of the used dataset,
which is key to deep learning models. They only claim that
a malware set of 250 samples was downloaded from contagio
mobile and 250 benign apps were downloaded from Google
Apps Storem but we don not know how many observations
for training the models this dataset generated.

[Wu and Hung2014] proposed a dynamic and partly static
malware analysis using application instrumentation, emulation,
GUI testing. Automatic tools were used to extract static and
dynamic features from a training dataset composed of 32,000
benign and 32,000 malicious applications and a testing set
of 1,000 and 1,000 respectively. There are 56,354 features
obtained from event combinations of logged data. The results
showed that the prediction accuracy reaches 86.1% and F-
score reaches 85.7 %. The authors claimed that the accuracy
increases significantly with the dataset size, but, as it is, the
method only correctly classifies 84% of the samples. The
framework should be used in conjunction with other existing
works to improve the detection rate, questioning its usefulness.

[Yerima et al.2015] proposes a novel approach using
ensemble learning for the detection of malware. The authors
address a classification problem. The machine learning models
are trained with a large dataset of malign and benign obser-
vations from an important antivirus vendor. Unlike Machine
Learning, Ensemble learning performance is not negatively im-
pacted with very high number of features. So, a dimensionality
reduction is not necessary. The model achieved 97.3% to 99%
detection accuracy with very low false positive rates.

[Narudin et al.2016|] evaluates the effectiveness of mobile
bots detection using network traffic. The address a classifica-
tion problem. They assess five classifiers, namely a decision
tree (J48), Bayes network, multi-layer perceptron, k-nn and
random forest using 1,200 malware samples from Android
Malware Genome Project and 1,200 benign samples. For this
task they used 11 features from 4 groups: basic information,
content-based, time-based and connection-based. The results
showed that Bayes network and random forest classifiers pro-
duced more accurate readings, with a 99.97% true positive rate
as opposed to the multi-layer perceptron with only 93.03%. A
shortcoming of this approach is that the detection process must
be run using cloud services, through which network traffic
is analyzed remotely. However this also helps to reduce the
overhead. Another shortcoming is that the dataset is artificially
balanced, hence questioning the high performance metrics
obtained.

Dynamic approaches they tend to run heavy, sometimes
requiring to run some processes and analysis in external
servers. However, there was not much discussion on this trend



or quantitative and consistent measures in this regard. The
revised approaches also tend to have too many features, with
the associated overfitting and curse of dimensionality disad-
vantage we already mention before for the static analysis. The
proposals mainly focus on a classification problem, they rarely
performed clustering; many more static analysis approaches
combined classification with clustering and dimensionality
reduction.

The first neural network approach was used by [Amos et
al.2013]] and [Demme et al.2013|], using a multilayer percep-
tron; the problem is that the datasets are very small and neural
networks usually need large datasets to learn the high number
of parameters they have. [Yuan et al.2014] proposed the first
Deep Learning approach but little discussion on the dataset
size was found. [Yerima et al.2015] explored an alternative
type of learning, namely Ensemble learning, which can be
promising for the presented datasets, with very high number of
features. Finally, we only found one hardware-based approach,
namely [Demme et al.2013|.

We describe next the permission-based approaches.

C. Machine Learning for Permission Analysis

[Sanz et al.2013|] proposed PUMA, a method for detecting
malicious Android applications by analysing the permissions.
1,811 benign Android Application samples and 239 mal-
ware samples were collected, so the dataset is unbalanced.
They used Random Forest, Naive Bayes, SVM, Logistic. The
features of the dataset were the collected permissions from
the Android Manifest file. The results using cross-validation
showed a 0.92 area under the ROC curve with the random
forest classifier, 86.37% of accuracy but 19% true positive
rate. This means that if this scheme is used, it should be used
as a pre-filter.

[Peng et al.2012]] introduce the notion of risk scoring and
ranking for Android applications. They propose to use prob-
abilistic generative models for risk scoring schemes based on
permissions{ﬂ ranging from the simple Naive Bayes (PNB), to
advanced hierarchical mixture models (HMNB). The Benign
Dataset is composed of 2 datasets from Google Play 157,856
apps for training and testing, 324,658 apps for validation. The
Malware dataset of 378 unique .apk files that are known to be
malicious. The features of the dataset are the permissions from
the Android Manifest file. The results showed that all three
generative models achieve an area under the ROC curve above
0.94, HMNB achieving the highest score. However, PNB is
more suitable because it has the monotonicity property of the
ranking scheme (i.e. removing a permission always reduces
the risk value of an app).

1280 they assume that some parametrized random process generates the
application datasets and learn the parameter value 6 that best explain the
data. Next, for each application they compute p(a;|6) , the probability that
the app’s data is generated by the model.

[Aung and Zaw2013] implement a framework that extracts
several permission features from several downloaded appli-
cations from android markets. The features were collected
from the corresponding APK file. For each application, the
authors identified real permissions required by the application
using a binary label. The used two datasets of 500 and 200
applications with 160 features each. They applied dimension-
ality reduction of the space of variables using Information
Gain method followed by k-means clustering and finally,
classification using three tree-based approaches. The results
showed that the Random Forest achieves 92% accuracy and
TPR. The paper doesn’t provide details on the results of the
clustering algorithm. For example, we would like to know
how balanced were the resulting classes in order to be able to
interpret the confusion matrix results. Also, the False Negative
Rate is high: 8%, which implies that 8% of the time, the
algorithm classifies a malign application as benign.

[Frank et al.2012|] used a probabilistic model to mine
permission request patterns from Android and Facebook appli-
cations. They used a method for Boolean matrix factorization
to find intersecting clusters of permissions. They used a
dataset of 188,389 Android applications. They found that the
permission requests of applications with low reputation differ
from the permission request patterns of applications with high
reputation. This may suggest that permission request patterns
can be utilized to construct a risk metric of the quality, and
hence, security, of new applications. For Android, the authors
found that there is indeed a relationship between permission
request patterns and categories. One shortcoming of this
approach is that it outputs a risk metric, not a classification,
thus it serves much more as way to identify user satisfaction
rather than application maliciousness.

In addition to the already mentioned shortcomings of each
one of the discussed proposals, the permission-based ap-
proaches have the following disadvantages, pointed out by
[Aater et al.2013]]:

o The existence of a some permissions in the application
manifest file does not necessarily mean that it is actually
used within the code. This means that many Android
applications have more privileges than they should.

o Many requested permissions -specially the critical- are
actually not written in the application’s code itself, in-
stead they are asked by advertisement programs.

o Malware is in fact capable of performing malicious
behavior without any permission.

D. Machine Learning for hybrid analysis

In this subsection we present a work with an hybrid ap-
proach to detect malware.

[Spreitzenbarth et al.2015] present Mobile-Sandbox, a
static and dynamic analyzer. In the static analysis a parse of



the application’s Manifest file and decompilation of the appli-
cation is done. In the static phase, the application determines
if the application is suspicious looking permissions or intents.
Then the sandbox performs the dynamic analysis executing
the application in order to log all performed actions including
those stemming from native API calls. Finally they combine
all of these results and try to detect malicious applications with
the help of machine-learning techniques. The dataset consists
of 69,223 apps from the most important Asian markets and
6,162 malicious samples from different malware families. The
features were transformed into a bag-of-words representation.
The classification algorithm used was Support Vector Machine
achieving an accuracy of 94% of the malware an a FPR of 1%.
An interesting characteristic of Mobile-Sandbox is that it can
track native API calls, and is easily accessible through a web
interface.

IV. CONCLUSIONS AND FUTURE WORK

Along this survey, we have identified some opportunity
areas regarding a machine learning approach to detect malware
in Android mobile devices:

« As we have seen through this work, malicious individual
data is is very hard to sample. Also, malicious activities
can last very little. So there is insufficient data to learn
from or detect.

o As there are not enough malicious applications to use in
the training phase, most of the presented methods suffer
from class imbalance. Many papers reported Accuracy
as a means to evaluate their models. The problem is
that a dataset suffering from class imbalance will be
uninformative in terms of Accuracy. These observations
were very rarely discussed in the papers.

e Many papers collected a very high number of features
(i.e. dimensions) combined with very few observations.
This yields to the well-known problem of the curse of
dimensionality: when the dimensionality increases, the
volume of the space increases so fast that the available
data become sparse. The amount of data needed to
achieve significance grows exponentially with the dimen-
sionality. The curse of dimensionality also implies that
the model will generalize poorly, i.e. often over-fitting
on the training set and achieving poor performance in
unseen observations.

o More exploration of techniques for dimensionality reduc-
tion. Most of the works that performed dimensionality
reduction used methods based on Information Theory (i.e.
Information Gain), but there exist many other methods,
such as Principal Component Analysis and t-distributed
stochastic neighbor embedding (see [Maaten and Hin-
ton2008])).

o None of the revised works included an error analysis,
i.e. an analysis that helps to understand why the algo-
rithm performed successfully in some observations and

unsuccessfully in others. This also includes understanding
which are the features that contribute more to the perfor-
mance (for example using an incremental analysis). This
endeavour is key to really understand the models and to
produce better ones.

e The need of more approaches that integrate cluster-
ing methods, dimensionality reduction and classification
methods. First, clustering can help to obtain labeled
datasets (i.e. benign and malware) if the underlying
dataset do have both types of observations (regardless of
the researcher ignoring the true labels). Once the dataset
is labelled, a dimensionality reduction and classification
schemes may follow.

o The malicious behavior may vary between attacks, re-
sulting in many types of malicious behaviors. The learnt
algorithms are not definite and final, so a continuously
adapting machine learning scheme should be imple-
mented. This implies much more overhead than initially
considered, potentially making the scheme unaffordable
due to the mobile device particular resource constriction.

o There is not an standardized way to measure the perfor-
mance of the models. While some papers present many
classification metrics such as Accuracy, TPR, FPR, TNR,
area under the ROC curve, etc, some others only present
the accuracy, which, as we have seen, es misleading.

o There is not a clear description of the dataset used to
evaluate the performance of the models. While some pa-
pers report using Cross validation techniques and others
splitting the dataset into training and test, some others
omit this explanation.

With the objective of improving the malware detection
models for Android devices (not necessarily with a machine
learning perspective), we can identify the following interesting
venue of work:

o The need of bigger malware datasets. This will condition
the advancement of the models themselves, as they are
not only evaluated, but also trained using the available
data.

o A comprehensive understanding of the currently available
datasets. This will guide the work towards the needs in
this area.

e The need of more approaches that integrate the three
types of analysis (dynamic, static and permissions-base)
in a modular approach.

o Most of the machine learning methods will fail to detect
instantaneous and abrupt attacks, so it may be worthwhile
to combine machine learning detectors with misuse-based
detectors, which are rule-based or knowledge-based.

o The need of more hardware-based approaches, as they
tend to be more efficient than software-based. We only
found one such type of work, e.g. [Demme et al.2013]].

o The need of models that, in addition to identify malware,
are also able to classify the malware by type/family.

« Discussion on the usability, scalability and compatibility



with other Operative Systems.

« While classification metrics are consistently reported i.e.
effectiveness of the detection, we did not find this for
the computational and mobile device efficiency side, for
example, a classic computational complexity measure,
mobile device resource-consumption metrics (for exam-
ple CPU, memory and battery consumption), overhead
metrics, etc. Many proposals claim to be “very efficient"
but they rely on external applications to perform certain
tasks and analysis (mostly dynamic-oriented analysis, for
example sandboxes or emulators). Hence, currently this
is a very vague notion as it is really hard to compare
the proposals in this dimension. This will impact the real
scalability of the systems and will guide the needs in this
path.
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